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Abstract
In a distributed fault-tolerant server system realized

according to the open group model, inconsistency will
(temporarily) arise between the dynamic membership
of the replicated service and its client-side represent-
ation in the event of server failures and recoveries.
The paper proposes techniques for maintaining this
consistency and discuss their performance implica-
tions in failure/recovery scenarios where clients load
balance requests on the servers. Comparative perfor-
mance measurements is carried out for two of the pro-
posed techniques. The results indicate that the per-
formance impact of lacking consistency is easily kept
small, and that the cost of the technique is small.

1 Introduction
The increasing use of online services in our day-

to-day activities has mandated that the provided ser-
vices remain available and that they perform their
operations correctly. To accommodate these goals,
it is common to replicate critical system components
(servers) in the form of object groups [3]. Consistency
among the object group members is typically guaran-
teed through a group communication service [1]. In
the open group model [2], external clients interact
transparently with the object group, as if it were a
single, non-replicated server object. This is different
from the closed group model, in which clients must
become member of the group prior to any interaction
with it, thus making it less scalable with respect to the
number of simultaneous clients. In order for clients
to communicate with the object group, they need to
obtain an object group reference. Typically this is ac-
complished using a naming/registry service [7]. The
task of a naming service is to map a textual service
name to a remote object reference, also called stub
or proxy. Such a proxy is used by clients to access
a remote service object. For a replicated service it is
common that this (client-side) proxy hold information

about the entire object group, allowing the client-side
to perform failover to a different group member should
some member have failed.

This paper addresses issues concerning maintain-
ing consistency between the dynamic server-side group
membership and the client-side proxy representation
of that membership. Unless the client-side member-
ship is updated in some way, the client will become
exposed to server-side failures. Another aspect is keep-
ing the naming service consistent with the server-side
group membership. Building a dependable distributed
middleware platform requires the naming service to
be fault tolerant. Several existing middleware plat-
forms provide a dependable naming service, including
Jgroup [7] and Aroma [9]. However, none of these
naming services update their database of client-side
proxies in the presence of failures. The proxy will con-
tain also references to failed servers, forcing the client
to perform failover for the same server multiple times,
leading to increased failover latency.

This paper presents an extension to the client-side
proxy mechanism of the Jgroup/ARM [8, 6] object
group middleware platform and its dependable nam-
ing service [7], to maintain consistency between the
server-side group membership and its representations
both at the client-side and in the naming service
database. The paper is structured as follows. Sec-
tion 2 gives an overview of the Jgroup/ARM repli-
cation management framework, and the dependable
registry service. Section 3 discuss client-side perfor-
mance impairments, and various times involved in the
update problem. Section 4 presents the suggested leas-
ing and notification techniques for maintaining con-
sistency with the dependable registry. In Section 5
several solutions to the client-side update problem is
discussed, and in Section 6 we provide measurement
results and a comparative evaluation of two client-side
update techniques. Section 7 concludes the paper.



2 Jgroup/ARM Overview
Jgroup is a novel object group-based middleware

platform that integrates the Java RMI and Jini dis-
tributed object models with object group technology
and includes numerous innovative features that make
it suitable for developing modern network applica-
tions. For a description of its capabilities, see [8].

ARM [4, 6] is a replicated dependability manager
that is built on top of Jgroup and augments it with
mechanisms for the automatic management of com-
plex applications based on object groups. ARM han-
dles both replica distribution, according to an ex-
tensible distribution policy, as well as replica recov-
ery, based on a replication policy. Both policies are
group-specific, and this allows the creation of object
groups with varying dependability requirements and
recovery needs. A mechanism is provided to collect
and interpret failure notifications from the underly-
ing group communication system. This information
is used to trigger group-specific recovery actions in
order to reestablish system dependability properties
after failures.
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Figure 1: Jgroup/ARM overview.

Figure 1 shows a simplified overview of the work-
ings of Jgroup/ARM. Initially, a group of three mem-
bers install a view V0 = {S1, S2, S3}, and after some
unspecified time S2 crashes. This leads to the instal-
lation of a new view, V1 = {S1, S3}, after which S1

(the leader) notifies ARM of the failure. ARM will at-
tempt to maintain the redundancy level by installing
a replacement replica, S4, which leads to installation
of view V2 = {S1, S3, S4}. During initialization of S4,
bind() is invoked on the registry in order to associate
the S4 group member with the GA client-side proxy.
Later, once a client needs to access group A, it con-
tacts the registry to obtain the client-side proxy, GA.
Given GA, the client can perform invocations on all
live members of the group. Note that S2 still remains
in the registry database, even though it has crashed.
This is since there is no update mechanism in place.

Several time values related to the failure scenario

just described, are shown in the timeline in Figure 3.
Let t0 denote the time at which S2 crashes. Let tV1 be
the time that it takes for the other servers to detect
and agree on a new view (V1), while tV2 is the time it
takes to install a replacement server (S4) and for the
servers to agree on a new view (V2). Thus, the sum
corresponds to the recovery time, tr = tV1 + tV2 .

Jgroup includes a dependable registry service [7, 8],
that can be used by servers to advertise their ability to
provide a given service identified by a service name.
In addition, clients will be able to retrieve a group
proxy for a given service, allowing them to perform
method invocations on the group of servers provid-
ing that service. The dependable registry service is
in essence an actively replicated database, preventing
the registry from becoming a single point of failure.
The database maintains mappings from service name
to the set of servers providing that particular service.
Thus, each entry in the database can be depicted as
follows: Name → {S1, S2, . . . , Sn}, were S denotes a
server, and n represents the number of servers regis-
tered under Name in the registry.

3 Client-side Performance Issues
3.1 Performance Without Updates of the

Client-side Proxy
To demonstrate the performance penalty of not up-

dating the client-side membership in accordance with
the dynamic server-side group membership, we per-
formed several experiments on a four server system
with crashes and recoveries in which the clients did
not update their membership. The clients perform
load balanced invocations on all known servers. The
method invoked takes a 1000 byte array as argument,
and returns the same array back to the client.

Figure 2 shows the results of the experiment. The
plot shows several lines for various client loads rang-
ing from 7 to 70 clients. Only 7 physical machines
are used for the clients, whereas in all cases the four
servers run on dedicated machines, i.e., only the num-
ber of live servers remaining in the client-side proxy
varies. Initially, all client-side proxies contained all
four servers. During the experiment servers crashed
and recovered, rendering the client-side proxies incon-
sistent (having fewer live servers). Not surprisingly the
results show that the client-side proxies should update
their membership information to avoid increased invo-
cation latencies. Once a client detect a server failure,
it is removed from the client-side proxy. Thus, the
observed performance drop is due to contention at the
servers. Another, perhaps more important problem is
the scenario were all servers crash before updating the
proxy, rendering failed servers visible to clients.
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Figure 2: The performance drop due to not updating
the client-side membership.

3.2 Client-side Update Delays
To be able to reason about the timing involved

in updating the client-side proxy (GA), lets assume
that the proxy is updated in some unspecified manner.
The timeline in Figure 3 illustrates one possible fail-
ure/recovery scenario in which the client-side proxy
(GA) is updated. In this example a group of three
members install a view V0 = {S1, S2, S3}, and bind
their remote references in the registry service, allow-
ing clients to obtain a group reference (the GA) from
the registry. After some unspecified time S2 crashes,
rendering all existing GAs inconsistent with the actual
situation. Given that we have two remaining servers
in the group, the GA can simply failover to another
server, to perform a client invocation.
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Figure 3: The update timeline

The GA should however be updated to enable the
use of all available servers, and the timeline in Figure 3
illustrates the timing involved in updating the client-
side proxy. Let td be the time until the client-side
proxy (GA) detects that S2 has crashed. The total
time for updating GA is given by TU = tu− t0, and we
denote this time as the total update delay. Note that
td may stretch beyond tu, when GA does not select to
use S2, or if the client does not perform any invoca-

tions in the range [t0, tu]. Finally, let the client update
time, tcu, be the time from the installation of the com-
pensation view (V2) and until GA is again consistent
with the actual situation.

The failover latency, tf is the additional time im-
posed on clients when attempting to invoke a server
that has failed. Let tf be the time between the proxy
receiving the actual invocation and the time of per-
forming a reinvocation on a different server, as illus-
trated in Figure 4. Obviously, the failover latency does
not include the actual invocation-response latency.
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Figure 4: The failover latency

4 Updating the Dependable Registry
The current implementation of the dependable reg-

istry described in Section 2 lack support for updating
its content to ensure consistency with the server-side
group membership. To better understand why this
is a problem, consider the following scenarios: (i) a
server leaves the group voluntarily; and (ii) a server
leaves the group involuntarily by crashing or parti-
tioning. In the former case, the server may perform
the unbind() method on the registry, allowing the reg-
istry database to be updated accordingly, by removing
the server’s reference. In the latter case, however, the
failed server is unlikely to be able to perform the un-

bind() method. Thus, rendering the registry database
in an inconsistent state with respect to the server-side
membership. In this situation, the dependable reg-
istry will continue to supply clients requesting a refer-
ence (GA) for the server group, through the lookup()

method, with a proxy that contain servers that are no
longer member of the group. In fact, the proxy may
be completely obsolete, when all servers in the group
have crashed. Furthermore, if new servers were to be
started to replace failed once, the number of members
of the group proxy for GA would grow to become quite
large. Figure 5 illustrates the problem visually.

To prevent clients from obtaining obsolete proxies
from the dependable registry, we provide two distinct
techniques for maintaining consistency of the registry
content. The techniques are implemented as separate
layers that must be embedded within the server group
protocol stack. A detailed description of the following
techniques can be found in [5].
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which is an incorrect representation of the actual
group membership.

4.1 The Lease-based Refresh Technique
Our first solution to the problem is based on the

well known concept of leasing. By leasing we mean
that each server’s object reference in the dependable
registry is only valid for a given amount of time called
the leaseTime. When a server’s object reference has
been in the registry for a longer period of time than
its leaseTime, it is considered a candidate for removal
from the registry database. To prevent such removal,
the server has to periodically renew its lease with the
registry. The interval between these refresh() invoca-
tions is referred to as the refreshRate. Figure 6 illustrate
the workings of the LeaseLayer.

4.2 The Notification Technique
Jgroup provides a group membership service that

allows servers (or layers) to receive notification of
changes to the group’s composition. These notifica-
tions come in the form of viewChange() method invoca-
tions. Thus, upon receiving such a view change event,
the NotifyLayer selects a leader (S3) for the group. The
leader is responsible for updating the dependable reg-
istry in case the new view represent a contraction of
the group’s membership. This is done by executing the
unbind() method (with S2 as argument) on the registry.

Figure 7 illustrates the workings of the NotifyLayer.
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Figure 6: LeaseLayer exemplified. S2 has crashed and
is excluded by the registry since its lease is not re-
newed.
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Figure 7: NotifyLayer exemplified. S3 is the leader.

4.3 Combining Notification and Leasing

The NotifyLayer is by far the most interesting and
elegant technique, but it has a drawback in situations
when there is only one remaining server in the object
group. In this case the last server will be unable to
notify the registry when it fails. However, we may
combine the LeaseLayer and the NotifyLayer, in order
to exploit the advantages of both layers. The default
for the combined approach would be to use the Notify-

Layer (i.e., when #Servers > 1), and in the situation
with only one (i.e., when #Servers = 1) remaining
server the LeaseLayer is activated. By doing this we
will also diminish the main drawback of leasing tech-
nique, namely the amount of generated network traf-
fic, since there is only one server that needs to perform
a refresh() invocation.



5 Updating the Client-side

Even though the dependable registry is kept up-to-
date, the client-side proxy representation of the group
membership will become (partially) invalid since it is
not updated in any way. Since the membership in-
formation known to the client-side proxy may include
both failed and working servers, the proxy may hide
that some servers have failed by using those that work.
For each anycast invocation, the client proxy selects
uniformly a single server among the working servers.

In the current release of Jgroup, the client-side
proxy mechanism will throw an exception to the client
application if all group members have become unavail-
able, the client application can contact the registry
in order to obtain a fresh copy of the group proxy.
However, this yields a poor load distribution among
the servers and the operation should also be trans-
parent to the client application programmer. Various
techniques could be used to obtain such failure trans-
parency.

1. Periodic refresh. The client-side proxy must re-
quest a new group proxy from the dependable reg-
istry at periodic intervals.

2. Client-side view refresh. For each invocation, the
client-side proxy attaches its current view identi-
fier. The server compares the client view with its
own view. If the two differs, the server augments
the result message with its current view, allowing
the client to update its membership information.

Technique 1 requires selecting a suitable refresh
rate interval, which can be difficult. If set too low,
it could potentially generate a lot of overhead net-
work traffic, and if set too high we run the risk that it
is not updated often enough to avoid exposing server
failures to the client. This technique, work by indirect
updates in that it rely on the registry already being
updated, which may not be the case, depending on
the technique used to update the registry. Therefore,
technique 2 is very appealing in that it will work even
though the registry is not updated, since the server-
side handles updating clients itself.

The main difference between these techniques is the
time it takes the client-side proxy to return to a consis-
tent state with respect to the membership of the server
group. This is not an issue concerning server availabil-
ity, but rather the ability of the client-side proxy to
load balance its invocations on all active servers, and
not just the ones that are known to the clients.

6 Measurements and Evaluation
Figure 8 gives an overview of the experiment con-

figuration, consisting of some 56 clients, each of which
perform a continuous stream of anycast method in-
vocations. The method used takes an array of 1000
bytes as argument and returns the same array. In each
experiment we measure the round trip invocation-
response latency at the clients. The time-axes cor-
respond to the receive time of an invocation.
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Figure 8: Experiment setup

Client-side view refresh. Figure 9 illustrate the
results obtained using Technique 2. After the server
crash (detected by the client at the 5 second mark),
the proxy removes its reference to the failed server and
continues to use only the remaining server known to
the proxy. The failover latency (tf ) can be seen as the
blank interval immediately before to the client failure
detection point. The average tf = 631.8 ms. Delayed
invocations due to failover are not shown in the graph
as they fall too far outside the plot range, and rep-
resents only a minor portion of all invocations. As
the figure show, the actual server recovery instance,
and the point at which the clients become updated is
almost overlapping (difference of tcu = 52 ms). The
increase in invocation latency immediately after re-
covery, mainly stems from connection establishment.
For readability, not all data related to post recovery
is shown in the figure; that is there is also some invo-
cation latencies in the range [200,400].

With no update, the system have a steady state
performance as the one between failure and recovery
in Figure 9, cf. the discussion in Section 3.

Periodic refresh. Figure 10 shows the results of
Technique 1. In this experiment, we used a refresh rate
of 15 seconds. As in an operative system, the clients
start independently and asynchronously. Hence, re-
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Figure 9: Client-side view refresh
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Figure 10: Periodic refresh

freshes will occur uniformly distributed over the re-
fresh interval and the clients gradually establish con-
nections to the replacement server. This leads to an
average client update time as high as tcu = 8.16 sec-
onds.

In both experiments we observed higher invocation
latencies (approx. 100 ms) at a regular rate of about
0.35 seconds. These invocations take longer to com-
plete due to server-side garbage collection (GC) per-
formed regularly by the Java virtual machine. In ad-
dition to these, we can also see several other stochastic
components that are likely due to client-side GC and
operating system interrupts, among other things.

7 Conclusions
In this paper we have identified limitations and

a potential performance bottleneck in a client-side
proxy, and its corresponding naming service imple-
mentation. This bottleneck may lead to significantly
larger invocation latency for clients, and may render

server failures visible to the client application, an un-
desirable property in middleware frameworks. Several
techniques have been proposed for maintaining con-
sistency between the group membership and its repre-
sentations within the dependable registry and residing
at clients. A performance study has been carried out
to reveal the impact of inconsistent client-side proxies,
and to compare our proposed techniques. The client-
side view refresh technique, was shown to be the most
effective approach.
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