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Abstract

This paper presents the design and the implementation of Jgroup, an extension of the Java distributed ob-
ject model based on the group communication paradigm. Aim of Jgroup is to support the development of
dependable applications in partitionable distributed systems. Jgroup consists of a partitionable group com-
munication service that simplifies the cooperation among groups of replicated server objects, and a client-
side mechanism to transparently invoke methods on object groups as if they were single, non-replicated
entities.
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1 Introduction

In the last decade, the distributed object technology has proven to be a successful paradigm in
dealing with the increasing complexity of distributed systems. Examples of popular distributed
object frameworks are CORBA [12] and Java Remote Method Invocation (RMI) [22, 18]. These
middleware platforms enable distributed objects to interact using a client/server approach simi-
lar to the remote procedure call paradigm, but opportunely adapted for object-oriented systems.
Client objects are allowed to access the services provided by server objects by issuing remote
method invocations on them. Each server presents a well-defined interface that describes the set
of methods that can be remotely invoked by clients. All the low-level details of remote invoca-
tions (e.g. marshaling and unmarshaling arguments and results) are handled by local surrogate
objects, that present the same interface as their remote counterparts and act as proxies for them.

The distributed object models listed above focus their attention on improving portability, inter-
operability and reusability of distributed software components and applications. Unfortunately,
none of them provide an adequate support for the development of reliable and high-available ap-
plications. This constitutes a major drawback for many modern industrial applications, for which
requirements such as reliability and high-availability are gaining increasing importance. In the
absence of any kind of systematic support, building applications capable to deal with partial fail-
ures such as process crashes and network partitionings is an error-prone and time-consuming
task.

In order to overcome these difficulties, the object group paradigm [15] has been proposed. In the
object group approach, the functionalities of a remote server are replicated among a group of
objects. Clients interact with object groups in a transparent way, as if they were single, non-
replicated entities. Replicated objects forming a group cooperate in order to provide a reliable
and high-available service to their clients. This cooperation is established through the facilities
offered by a group communication service (GCS) [7, 21, 1, 20, 3], that enables the creation of dy-
namic groups of objects that communicate through reliable multicast primitives. Objects forming
a group are kept informed about the current membership of the group itself, that may vary on
run-time due to accidental events such as failures and repairs, or to voluntary requests to join or
leave the group. Examples of distributed object models based on the object group paradigm are
Orbix+lsis [13], Electra [14, 13], Object Group Service (OGS) [10] and Filterfresh [5]. Apart from
Filterfresh, that is a group-enhanced extension of the Java distributed object model, the others
combine the benefits of CORBA with the reliability provided by a group communication service.

These group-oriented distributed object models are based on primary-partition GCSes [7]. The
primary-partition approach is intended for systems with no network partitionings, or for sys-
tems that require that the membership of a group is allowed to change in at most one network
partition, the so-called “primary partition”. This is a serious limitation for modern large-scale
distributed systems, characterized by highly partitionable communication networks. Partition-
ings tend to become more frequent and longer-lasting as the geographic extent of the system
grows, or its connectivity weakens due to the presence of mobile units or wireless links. Appli-
cations based on a primary-partition approach cannot guarantee continued availability outside
the primary partition; moreover, particular failure scenarios may cause the complete blocking of
a primary-partition GCS [17], and consequently the complete blocking of applications based on
them.

In order to overcome these problems and to provide a systematic support for the development
of dependable applications in partitionable systems, we have designed Jgroup, an extension of
Java RMI based on a partitionable GCS [3]. The partitionable approach to group communication
provides replicated objects with the capability of carrying on the computation and being available
in multiple concurrent partitions. In the Jgroup distributed object model, replicated server objects
presenting the same interface are gathered into groups; these groups simulate the behavior of
single, non-replicated remote objects by presenting the same interface and allowing clients to
invoke their methods through the standard Java RMI semantics. Consistency among replicated
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servers forming a group can be guaranteed by implementing opportune consistency protocols
based on the group communication primitives provided with Jgroup.

Goal of this work is to present the design and the implementation of Jgroup. The paper is
organized as follows. Sections 2 and 3 recall some background on the group communication
paradigm and Java RMI. Section 4 describes the Jgroup distributed object model, while Section 5
contains few notes about the Jgroup implementation. Section 6 compares this work with similar
projects. Finally, conclusions are presented in Section 7.

2  The Group Communication Paradigm

The group communication paradigm [6] allows the provision of reliable and high-available ap-
plications through replication. Groups are the key abstraction of group communication. A group
consists of a collection of members (i.e., processes or objects) that share a common goal and ac-
tively maintain a replicated state.

During the last years, several experimental and commercial group communication services have
appeared [7, 21, 1, 20, 3]. Although the services provided by these systems present several dif-
ferences, the key mechanisms underlying their architectures are the same: a group membership
service integrated with a reliable multicast service. Task of a group membership service is to keep
members consistently informed about changes in the current membership of a group through
the installation of views. The membership of a group may vary due to voluntary requests to join
or leave a group, or to accidental events such as failures and repairs of both the computing sys-
tem (member crashes and recoveries) and the communication system (network partitioning and
mergings). Installed views consist of a collection of members and represent the perception of the
group’s membership that is shared by its members. In other words, there has to be agreement
among the members on the composition of a view before it can be installed. Task of a reliable
multicast service is to enable the members of a group to communicate by multicasting messages.
Message deliveries are integrated with view installations as follows: two members that install the
same pair of views in the same order deliver the same set of messages between the installations
of these views. This delivery semantics, called view synchrony, enables members to reason about
the state of other members using only local information such as the current view composition
and the set of delivered messages.

As noted in the introduction, two classes of GCS have emerged: primary-partition [7] and parti-
tionable [21, 1, 20, 3]. A primary-partition GCS attempts to maintain a single agreed view of the
current membership of a group. Members excluded from this view are not allowed to participate
in the distributed computation. In contrast, a partitionable GCS allows multiple agreed views to
co-exist in the system, each of them representing one of the partitions in which the network is
subdivided. Members of a view are allowed to carry on the distributed computation separately
from the members not included in the view. Primary-partition group communication services
are suitable for non-partitionable systems, or for applications that need to maintain a unique
state across the system. Partitionable systems are intended for applications that are able to take
advantage of their knowledge about partitionings in order to make progress in multiple, concur-
rent partitions. Applications with these characteristics are called partition-aware [4]. Examples
can be found in areas such as computer-supported cooperative work (CSCW), mobile systems,
weak-consistency data sharing.

3  The Java Distributed Object Model
Java RMI is a distributed object model that maintains the semantics of the Java object model,

making distributed objects easy to implement and to use. Remote objects are characterized by the
fact that their methods can be invoked from other Java virtual machines, potentially on different
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Figure 1. The Java RMI Architecture

hosts. Given a remote object class, the set of its methods that can be remotely invoked is defined
by one or more remote interfaces. Clients of a remote object never interact with the actual imple-
mentation class of this object, but only with a local surrogate object that presents the same set of
remote interfaces.

The Java RMI architecture is illustrated in Figure 1 and consists of three layers: the stub/skeleton
layer, the remote reference layer and the transport layer. The stub/skeleton layer is the interface
between applications and the rest of the RMI system; moreover, it is responsible for marshaling
and unmarshaling the invocation parameters and the return values. Clients invoke methods of a
remote object through a stub, which acts as a proxy for the remote object. The stub implements
the same remote interfaces as the remote object, and forwards each invocation request to the re-
mote object through the remote reference layer. On the server side, a skeleton object dispatches
the requests coming from the remote reference layer to the corresponding methods of the remote
object. The remote reference layer is responsible for the semantics of the invocation. The current
version of Java RMI includes only two unicast (point-to-point) invocation mechanisms, one rel-
ative to servers always running on some machine, and one relative to servers that are activated
only when one of their methods is invoked. Finally, the transport layer is responsible for all the
low-level details such as connection management and invocation request transmission.

Before a client may invoke the methods of a remote object, it must obtain a stub for it. For
this reason, the Java RMI architecture includes a repository facility called registry that can be
used to retrieve remote object stubs by simple names. Each registry maintains a set of bindings
(name, remote object); new bindings can be added using the bi nd() method, while thel ookup()
method is used to obtain the stub for a remote object registered under a certain name. Since
registries are remote objects, the Java RMI architecture includes also a bootstrap mechanism to
obtain registry stubs.

4 The Jgroup Distributed Object Model

The Jgroup distributed object model (Figure 2) is based on two fundamental abstractions: remote
object groups and replicated remote objects. From the server’s point of view, a remote object group
consists of a collection of replicated remote objects (sometimes called replica for brevity) that
implement the same set of remote interfaces and coordinate their executions in order to appear
as a non-replicated remote object. Replicas forming a remote object group cooperate using a
partitionable GCS, whose task is to simplify the development of the consistency protocols needed
to offer a reliable and high-available service.

Clients have no access to single replicated remote objects and interact only with remote object
groups. From the client’s point of view, remote object groups are not distinguishable from stan-
dard remote objects. Each group implements one or more remote interfaces, whose methods can
be invoked using the RMI mechanism: clients obtain a local stub that presents the same set of
interfaces and acts as a surrogate of the remote object group. Every method invocation on the
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local stub will correspond to a remote method invocation on one or more of the replicas forming
the group, depending on the particular invocation semantics adopted.

The rest of this section is dedicated to two fundamental components of the Jgroup architecture:
on the server side, our partitionable GCS; on the client side, the transparent, fault-tolerant invo-
cation mechanism. The section is concluded by a description of the dependable registry, a reliable
and high-available application for registering replicated remote objects and retrieving stubs for
remote object groups.

4.1 The Group Communication Service

As introduced in Section 2, the partitionable GCS included in Jgroup can be subdivided in two
components: a partitionable group membership service and a reliable multicast service. In an-
other paper, we provide a formal specification for both of them [3]; here, we discuss briefly their
main characteristics and how they can be used to implement replicated remote objects.

In order to cooperate with its peers, a replicated remote object has to become member of a remote
object group ¢ through a join(y) request. After having joined a group g, replicated remote ob-
jects may leave it through leave(g) requests. The partitionable group membership service notifies
members of changes in the membership of a group ¢ through a vchg(g, v) event, that corresponds
to the installation of a view v. Each view is given a unique identifier and consists of a collection
of replicated remote objects. Members must be able to react opportunely to new failure scenarios
as depicted from views, for example by modifying the quality of the service they provide or try-
ing to recover from previous failures. The fact that our partitionable group membership service
allows the existence of multiple concurrent views must be taken into particular consideration.
As an example, consider the implementation of a shared blackboard for supporting cooperative
work sessions among groups of users. The installation of a new view due to a new partitioning
may require the display of a warning message informing the users that the state of the blackboard
will evolve inconsistently in distinct partitions. On the other hand, the installation of a new view
due to the merging of two partitions may cause the execution of a state reconciliation protocol on
the contents of the blackboard.

In our specification, the correspondence between the failure scenario and the views installed
by the group membership service is guaranteed by the View Completeness and View Accuracy
properties [3]. View Completeness forces crashed or partitioned members to be excluded from
installed views, while View Accuracy forces the inclusion of operational members with which it
is possible to communicate. Another important property is View Agreement, that requires that
before a view can be installed, members composing it must have reached an agreement on its
composition. Finally, the View Order property states that members installing the same pair of
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views must install them in the same order.

The reliable multicast service enables replicated remote objects to multicast a message m to the
members of a group ¢ through a mcast(g, m) request. The delivery of a message m relative to the
group g is notified to members through a dlvr(g, m) event. In the shared blackboard example, the
reliable multicast service can be used to report every change in the contents of the blackboard
to all the users participating in a cooperative work session. As introduced in Section 2, the view
synchrony semantics guarantees that two blackboards surviving together from a view to another
one have delivered the same set of messages between the two installations, and thus display the
same contents.

In our specification, the view synchrony semantics is enclosed in two properties, called Mes-
sage Agreement and Uniqueness. The Message Integrity property places simple integrity re-
guirements to prevent a message from being delivered multiple times or without having been
multicast. Finally, Message Liveness specifies under which conditions a multicast message is
delivered.

4.2 Remote Method Invocation Semantics

Method invocations on remote object groups may be executed following two different semantics.
The reliable unicast invocation semantics guarantees that a method invocation performed by a
client on a group of replicas will be executed by invoking the same method on at least one of the
replicas, unless the partition of the client does not contain any operational replica. On the other
hand, the reliable multicast invocation semantics guarantees that a method invocation performed
by a client on a group of replicas will be executed by invoking the same method on every replica
contained in the client’s partition, and that invocations on replicas are synchronized with view
installations in the same way as multicast messages.

The reliable unicast semantics is suitable for methods whose execution can be performed on a
single replica, without involving the entire group (e.g., read-only methods for interrogating a
replicated database, such as the | ookup() method of a distributed registry). On the other hand,
the reliable multicast semantics is suitable for methods whose execution must affect every replica
of a group (e.g., methods that alter the state of a replicated database, such as the bi nd() method
of a distributed registry). It is important to note that clients may be unaware of the invocation
semantics, while the replica implementation depends on it: for example, using a reliable unicast
semantics implies that methods altering the state of a database must multicast the update to every
replica in the group.

The invocation of the same method on multiple replicas poses interesting problems regarding
the handling of multiple return values from non-void methods. We have chosen to return the
value obtained from the first concurrent invocation to conclude. The main advantage of this
approach is transparency, since clients obtain a single value as if they were invoking a method of
a non-replicated object. Note that applications must be implemented in order to guarantee that
values returned from the replicas forming a group are idempotent. For this reason, an alternative
approach may be to return an array containing each return value obtained from the replicas.
Unfortunately, this approach is not transparent with respect to clients, since remote interfaces
and stubs must be opportunely modified in order to return array of objects.

The current version of Jgroup includes only the reliable unicast semantics: when a method of a
remote object group is invoked, the replicas forming the group are sequentially invoked, until a
reachable replica is found (in which case the result is returned to the client), or none of the replicas
can be contacted (in which case an exception is raised). This invocation mechanism is completely
transparent to the client. Note that due to the Two Generals Problem [11], we cannot guarantee that
a method is invoked on at most one of the replicas. Consider the following scenario in which
the same method is executed on two replicas: the first contacted replica receives the invocation
request, executes the selected method, but is unable to deliver the return value due to a sudden
partitioning. At this point, the invocation mechanism on the client contacts another replica that
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correctly executes the method.

4.3 The Dependable Registry

As described in Section 3, the Java RMI architecture requires a repository facility for registering
and retrieving remote objects. Unfortunately, the registry implementation included in the current
JDK is not suitable for remote groups. First of all, it does not provide a reliable and high-available
service: registry instances are not replicated and maintain different set of bindings, thus constitut-
ing single points of failures. Moreover, remote objects running on a certain host can be registered
only in a registry executed on the same host; this precludes the possibility of registering groups
of replicated remote object concurrently running on several different hosts.

For these reasons, the Jgroup distributed object model includes a dependable registry service,
implemented as a collection of replicated remote objects forming a remote object group. Each
replica maintains a set of bindings (name, remote object group). The bind primitive is used to add
a replica to the remote object group registered under a certain name; in other words, the depend-
able registry enables a set of replicas to bind themselves under the same name in order to form a
remote object group. The lookup primitive is used to retrieve the stub of a remote object group by
name.

A dependable registry has several advantages over its non-replicated counterpart. First, it offers
a high-available registry facility. Second, clients no longer need to be aware of the registry loca-
tion as in the JDK implementation. Distributed systems can be designed by including a certain
number of registry replicas running on different hosts and possibly on distinct portions of the
communication network. Clients access these replicas through standard RMI interactions as if
they were a single registry, and are guaranteed that their invocations will successfully terminate,
provided that at least one operational replica is running in their partitions.

During a partitioning, a dependable registry presents a partitioned behavior reflecting the cur-
rent failure scenario. A bind primitive executed inside a partition will not affect the replicas not
contained in that partition, while a lookup primitive will not be able to retrieve bindings regis-
tered outside the current partition after the beginning of the partitioning. Nevertheless, replicas
contained in a partition consistently maintain the same set of bindings and act as a single entity;
moreover, the disappearance of the partitioning causes the execution of a reconciliation protocol
in order to re-establish a consistent set of bindings among the replicas that belonged to different
partitions. It is important to note that this behavior is perfectly suitable for a partitionable dis-
tributed system, since clients asking for remote services are interested only in servers running in
their partitions.

5 Jgroup Implementation

Jgroup is completely written in Java and consists of three different components: a partitionable
GCS, the invocation mechanism and the dependable registry.

5.1 The Group Communication Service

The partitionable GCS included in Jgroup is based on the Relacs algorithm [3]. For sake of brevity,
in this section we provide only an overview about the main characteristics of the Java implemen-
tation of Relacs; a detailed description of the algorithm and a proof of its correctness can be found
in the relative paper. Before starting, it is important to note that the Relacs implementation can
be exploited separately from the Jgroup remote method invocation model. In other words, appli-
cations based on Relacs will be reliable and high-available, but will not be able to be invoked as
remote object groups.
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Our Java implementation of Relacs is based on a daemon/client model where a set of Relacs dae-
mons (implemented in the Rel acsDaenon class) provides the Relacs partitionable group com-
munication service to a set of remote objects. For each Java virtual machine, there could be at
most one Relacs daemon, whose functionalities are shared by each remote object running in the
same JVM. The use of this model, as opposed to having the group communication service pro-
vided by every object joining a group, minimizes the number of messages exchanged to establish
the group communication service.

Remote objects that want to participate in a distributed computation using Relacs must imple-
ment the Menber interface. Methods defined in Menber are callbacks that will be invoked to no-
tify the member object about group-related events such as view installations (method vchg( i nt

g, View v))and message deliveries (methoddl vr(int g, Msg m).

Member objects do not interact directly with the Relacs daemons running in their JVM; instead,
the interactions between a member and the corresponding daemon are handled by a group man-
ager. Group managers are defined in the G- oupManager interface and are obtained through the
GWFact or y class. Every member object is associated to one and only one group manager. Task
of a group manager is to provide its associated member with the group communication function-
alities needed to interact with groups. Each group manager runs its own thread of control that is
responsible for the invocation of the callback methods on its member. The member may invoke
the group manager in order to join and leave a group, or to multicast a message to a group. The
join(int g) method of a group manager is used to join the associated member object to the
group identified by ¢; | eave(i nt g) is used to remove the member from the group g; finally,
ncast (i nt g, Msg n) isused to multicast a message to the members of g.

Relacs daemons are the heart of the group communication protocol and consist of three com-
ponents: a transport service, a partitionable group membership service and a reliable multicast
service. The transport service is based on UDP and includes a routing algorithm fully integrated
with a failure detector [8]. The routing algorithm is needed to overcome the lack of transitiv-
ity in the communication network that can be sometimes experienced in large-scale distributed
systems like the Internet [17]. The failure detector is needed to guarantee the termination of
the group communication protocol and is based on the information obtained from the routing
algorithm. The group membership service and the reliable multicast service exploit the func-
tionalities offered by the transport service in order to implement the specification outlined in
Section 4.1. Every variation in the failure scenario, like a new partitioning or a merging, causes
the underlying failure detector to modify its list of suspected daemons. The new suspect list is
notified to the group membership service, which starts executing an agreement protocol among
the survived daemons. The agreement protocol is coordinator based: for every group interested
by the variation in the failure scenario, each daemon sends its estimate of the group composition
to a coordinator deterministically chosen from that estimate. When the coordinator observes an
agreement among the daemons composing an estimate, the estimate is translated in a view and
sent to every daemon interested in that view. The termination of the algorithm is guaranteed by
the fact that during an agreement protocol, the estimates sent by a daemon are monotonically
decreasing. When a daemon receives a new view from the coordinator, it notifies the group man-
agers interested in the view, which inform their associated members by invoking the opportune
callback method.

52 TheRepli cat edRenpt eCbj ect Class

The integration between our group communication model and the Java RMI system is based on
the Repl i cat edRenpt eChj ect class, the superclass of each replicated remote object. This class
plays two different roles: it is a remote object, and thus extends a set of remote interfaces; it is a
replicated object, and thus extends the Menber interface. The twofold nature of a replicated re-
mote object is reflected on the operations performed by the class constructor. As a remote object,
it announces its existence to the local remote reference and transport layers of the RMI system
through the export () method of the Uni cast Renot ehj ect class. As a member object, the
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class constructor instantiates a group manager that will provide the replicated remote object with
the group communication primitives described in Section 5.1.

53 The G- oupRef Class

As described in Section 3, a method invocation on a remote object is executed by invoking the
same method on a local stub that acts as a surrogate of the remote object. Each stub contains
a remote reference that identifies the remote object and is responsible for the invocation protocol.
When a stub method is invoked, the stub calls the i nvoke() method of its remote reference,
passing an identifier for the method and the associated invocation arguments to it. Thus, the
remote reference owned by the stub is the core of the invocation mechanism.

In order to implement the reliable unicast invocation semantics for remote object groups, we
have implemented the G- oupRef class. Group references differ from unicast remote references
because they contain a remote reference for each of the replicas forming a remote object group.
When the i nvoke() method of a group reference is called, one of the replicas contained in the
group reference is selected, and the corresponding i nvoke() method is called. If the invocation
on the selected replica terminates, the result value is returned to the client application. On the
other hand, if the invocation on the selected replica raises an exception due to a crash or a parti-
tioning, another remote reference is selected and the corresponding i nvoke() method is called.
This process continues until one of the invocations on the replicas successfully completes, or the
list of remote references terminates. In this case, an exception is raised to the application layer.

5.4 The Dependable Registry

The group reference description contained in the previous section does not explain how group
references are created. This basic task is performed by the dependable registry provided with
Jgroup, which builds a group reference by collecting the remote references of a set of replicated
remote objects registered under the same name. In this section, we provide a brief overview about
the dependable registry implementation. The complete algorithm can be found in a companion
work [19].

The Dependabl eRegi st ry interface defined in the Jgroup API contains two kinds of meth-
ods: retrieval methods such asli st () and | ookup(), and update methods such as bi nd(),
rebi nd() and renove() . Since each registry replica maintains its copy of the set of bindings,
the retrieval methods can be executed locally: the replicated registry instance that receives the
method invocation inspects its local set of bindings and returns an appropriate result value. The
behavior of update methods is different, since they involve the update of all replicas forming the
dependable registry group. When one of the replicas receives an update method invocation, it
multicasts an update message to the replicas in its current view. Replicas that deliver an update
message modify their local copy of the set of bindings. Given the possibility that the same re-
mote method invocation is executed on more than one replica (see Section 4.2), each invocation
request is tagged with an unique identifier. This avoids incorrect scenarios in which a duplicated
and delayed bind operation is executed after a subsequent remove operation.

At this point, we can conclude the description of our algorithm by analyzing three different
scenarios:

¢ When the system is stable (i.e. when no new failures or repairs occur), each network par-
tition contains a set of replicas that will eventually install the same view and deliver the
same set of multicast messages. This implies that each update operation invoked inside
that partition will be eventually performed by every replica in that partition.

¢ In case some of the replicas become partitioned or not operational, the GCS installs a new
view containing the surviving replicas. Due to the view synchrony semantics, all replicas in
the new view have delivered the same set of update messages during the previous view. If
the replicas of the new view maintained an identical set of bindings at the beginning of the
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previous view, they maintain an identical set of bindings also at the beginning of the new
view. This implies that no additional operation is needed in case of crashes or partitionings.

¢ When two or more partitions merge into a common one, replicas belonging to distinct par-
titions may have inconsistent set of bindings. For this reason, a state reconciliation pro-
tocol is needed. This protocol [19] is based on the election of a coordinator for each of
the merging partitions, whose task is to multicast a restore message containing a compact
representation of the update operations performed during the previous partitioning. Each
coordinator acts on behalf of all the replicas contained in its previous view; this reduces the
number of multicast messages exchanged to restore a global state. When a replica delivers
a restore message, it updates its set of bindings.

6 Discussion and Related Work

In the last few years, the problem of integrating the group communication paradigm with dis-
tributed object technologies such as CORBA [12] and Java RMI [22, 18] has been the subject of
intense investigation [14, 9, 13, 5].

Electra [14, 13] and Orbix+lsis [13] are two CORBA object request brokers (ORB) that support the
implementation of reliable distributed applications based on group communication. The former
is a commercial product that integrates Orbix, a CORBA-compliant development environment,
with the group communication facilities of ISIS [7]. The latter is an academic ORB whose im-
plementation is based on group communication platforms such as ISIS [7] or Horus [21]. Both
toolkits allow programmers to treat collections of CORBA objects as if they were a single entity,
and clients invoke operations on object groups without needing to know the membership of the
group.

Electra and Orbix+lsis are based on the integration approach [9], which consists in modifying and
extending an ORB with group communication mechanisms. The integration approach is appeal-
ing for its transparency, since clients do not need to know if the service they require is provided
by a single object or a group; nevertheless, the resulting ORBs are not CORBA-compliant. An
alternative methodology is the service approach [9], which consists in providing group commu-
nication as a service on top of the ORB. Clients hold references to OGS services, whose task is to
provide primitives to communicate with groups of objects. An example of object group toolkit
based on the service approach is the Object Group Service [10]. Although the service approach is
CORBA-compliant, clients cannot transparently access a group of objects as if they were a single
entity, but they must use the primitives offered by the OGS.

Being based on Java RMI, Jgroup does not suffer of any of the problems experienced by these
approaches. Java RMI enables the construction of group references, whose task is to manage the
interaction between clients and remote object groups. The resulting system provides transparent
access to remote object groups and completely satisfies the specification of Java RMI.

iBus [16] is a commercial product written in Java and aimed at supporting intranet applications
such as content delivery systems, groupware and fault-tolerant client/server systems. The iBus
architecture does not integrate the group communication paradigm with the standard Java RMI
architecture; instead, iBus is based on the concept of multicast channels mapped on IP multicast
groups. Clients can subscribe to multicast channels and can push and pull messages over a
subscribed channel. Unfortunately, the current version of the protocol does not provide view
synchrony; in other words, there is no guarantee that pull operations (i.e. message deliveries) are
synchronized with view changes.

Filterfresh [5] and Jgroup share the same goal, i.e. the integration of the group communication
paradigm with the Java distributed object model. Due to the constraints inherent to Java RMI,
the approaches they follow are similar: both offer a reliable invocation mechanism for remote
object groups composed by a collection of remote objects that cooperate through a GCS, and a
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distributed implementation of the RMI registry. Nevertheless, there are also important differ-
ences. Filterfresh group references contain a reference for only one of the remote objects forming
a group. If this remote object is partitioned from the invoking client, the i nvoke() method of
the group reference asks the reliable registry for the reference of another remote object belong-
ing to the group. This means that each invocation failure requires an additional RMI interaction
with the reliable registry. This slows down the invocation mechanism in highly partitionable
distributed systems such as large-scale and wireless networks. In contrast, Jgroup group refer-
ences contain a reference for each of the replicas forming a group and are able to independently
select an operational replica in their partition. Another difference is in the replication degree of
the distributed registry. In Filterfresh, each host containing a RMI client must execute a registry
replica. This poses serious scalability problems, for example for the high costs of bi nd() op-
erations. Instead, application developers can choose the appropriate replication degree for the
Jgroup dependable registry, for example executing a registry instance only on hosts containing
server objects.

But the main difference between Jgroup and Filterfresh is that Jgroup is based on a partitionable
GCS, while Filterfresh is based on a primary-partition system. The primary-partition approach
is not satisfactory for the design of high-available applications in partitionable environments,
since primary-partition systems require the existence of a totally-connected majority of correct
members. In a highly partitionable environment, this requirement may be rarely satisfied. The
absence of a primary partition leads to the total blocking of the system; for example, Filterfresh
does not guarantee that the process of constructing a new view will eventually terminate [5].
In Jgroup, the agreement protocol on new views will eventually terminate under any failure
scenario [3]. More importantly, even when a primary partition exists, members not belonging to
it cannot collaborate until communication with the primary partitions is restored, thus precluding
continued availability in concurrent partitions. The Jgroup dependable registry is able to provide
continued availability in every partition containing at least one operational registry instance.

7 Conclusions

CORBA [12] and Java RMI [22, 18] do not specify any abstraction for supporting the development
of dependable applications in spite of process failures and network partitionings. Group com-
munication, on the other hand, has proven to be an adequate paradigm for building reliable and
high-available distributed systems. The integration of these complementary technologies in or-
der to obtain a programming framework capable to support the design and the implementation
of object-oriented, dependable distributed systems is an open research area [14, 13, 5, 10].

In this paper, we present the design and the implementation of Jgroup, an extension of the Java
distributed object model based on the group communication paradigm. Differently from other
group-oriented extensions of existing distributed object models, Jgroup is expressly aimed at sup-
porting the development of reliable and high-available distributed applications in partitionable
environments. Jgroup enables the creation of groups of remote objects that cooperate towards
some common goal using a partitionable GCS. Remote object groups simulate the behavior of
standard remote objects by implementing a set of remote interfaces and by enabling clients to
remotely invoke the methods defined in these interfaces through the standard Java RMI mecha-
nism.

Currently, we are working on the implementation of the reliable multicast invocation semantics
defined in Section 4.2 and on the possibility of specifying which methods of a remote interface
should be invoked with a reliable unicast invocation semantics (e.g., methods that could be ef-
ficiently carried out by a single object) or with a reliable multicast invocation semantics (e.g.,
methods that involve the entire group of replicas). We are also considering how to improve the
performance of the low-level communication protocols of Jgroup through IP multicast. Future
work will include the design and the implementation of state reconciliation primitives for sup-
porting the reconstruction of a shared state after the disappearing of a partitioning [2].
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