Jgroup Tutorial and Programmer’s Manual

Alberto Montresor * Hein Meling *

February 2002

Abstract

This tutorial gives a brief introduction to Java Remote Method Invocation, an
overview and some details of the services provided by the Jgroup Group Communi-
cation System and explains how to develop distributed applications using Jgroup. It
also gives a brief overview of the Autonomous Replication Management framework.

1 Introduction

Building distributed applications is a complex task and in recent years the emergence of
programming environments to simplify development of distributed applications have been
introduced. These programming environments are often refered to as a middleware between
the application itself and the operating system. Middleware provides various services that
applications can use to provide end-user services. There are several types of middleware
that support different approaches, such as computational middleware and message oriented
middleware. This tutorial cover only Java Remote Method Invocation (RMI) [17], and in
particular the Jgroup Group Communication System (GCS), which can be classified as a
computational middleware. Computational middleware is characterized by transparency
at the level of method invocation (function call), and this approach is also used in COR-
BA [12]. Java RMI is also the technology used in Jini [4] and J2EE [18].

In order to abstract the complexity of distributed systems and to promote modu-
larity and reusability, most middleware platforms are based on object-oriented concepts
like abstraction, encapsulation, inheritance and polymorphism. Furthermore, they enable
client/server interactions among distributed objects: server objects encapsulate an inter-
nal state and make it accessible through a set of well-defined interfaces; client objects are
allowed to access services provided by server objects by issuing remote method invocations
on them. Remote method invocations are handled by local proxy objects, often refered to

*Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna
(Italy), Email: montresor@CS.UniBO.IT

iDepartment of Telematics, Norwegian University of Science and Technology, O.S. Bragstadsplass 2A,
N-7491 Trondheim (Norway), Email: meling@item.ntnu.no

as stubs, that deal with all low-level details of an invocation, such as communication and
marshalling of invocation parameters.

Existing object-oriented middleware environments focus their attention on improving
portability, interoperability and reusability of distributed software components and appli-
cations. Unfortunately, none of them provide adequate support for the development of
dependable applications in the presence of partial failures. The main problem is the lack
of “one-to-many” (multicast) interaction primitives allowing clients to reliably invoke the
same method on several objects at once. This interaction style may greatly simplify the
development of several types of applications with reliability and high-availability require-
ments. Its lack constitutes a major drawback for many modern industrial applications, for
which these requirements are gaining increasing importance [11]. In the absence of any
systematic support, building applications able to deal with partial failures such as crashes
and network partitionings is an error-prone and time-consuming task.

In an effort to fill this void, the object group paradigm has been proposed [10]. In this
paradigm, functions of a distributed service are replicated among a collection of logically
related server objects gathered together in an object group. A group constitutes a logical
addressing facility: clients transparently interact with object groups by remotely invoking
methods on them, as if they were single, non-replicated remote objects. A method invo-
cation on a group results in the method executed by one or more of the servers forming
the group, depending on the invocation semantics. To distinguish these multi-peer invo-
cations from standard “point-to-point” method invocations, we call them group method
inwvocations. Servers forming a group cooperate in order to provide a more dependable
version of the service to their clients. Cooperation among servers is achieved through a
group membership service and a reliable communication service [9, 13, 19, 1, 7], that enable
the creation of dynamic object groups and provide primitives for sending messages to all
servers in a group, with various reliability and ordering guarantees.

1.1 Revisiting Java Remote Method Invocation

The purpose of providing a framework for remote method invocation is primarily to make
the programming style for building distributed systems, as much as possible, like the one
for building non-distributed systems. That is, to make a remote method invocation appear
as if it is just a local method invocation. The reasoning behind this is that working
with distributed systems is a complex task, even without having to thing about message
exchange.

The Java Remote Method Invocation (RMI) system allows an object running in one
Java Virtual Machine (JVM) to invoke methods on an object running in another JVM. RMI
provides for remote communication between programs written in the Java programming
language.

The main difference between RMI and local invocations is that special handling is
required to obtain object references for the remote objects. This is typically accomplished
using a naming service. A naming service is a very simple database of name-to-object
reference mappings.

. ~(D manual startup
e

(7)remote reference to Server

RMI registr

manual startup () lookup(name) (3) bind(server, name)

method invocation

f

Server

~ _ (2) manual startup

(9) result / exception

Output to screen: Server ready...

Figure 1: Overview of interactions in the RMI model.

Java RMI Architecture Overview

Figure 1 gives an overview of the workings of Java RMI, describing the sequence in which
tasks are typically executed. As mentioned above, to run a distributed service we need
to have a naming service, also called a registry. Initially, the RMI registry is thus started
manually (0), followed by the starting of the server (). During its initialization phase, the
server will register (bind) its remote object reference ((Remote) this) with the RMI registry
(O), associating the server with a name. After the initialization phase (), the server will
simply wait for clients to issue remote method invocations on it. Assuming that a server
has been able to register its reference in the registry, a client can be started () and it can
perform a lookup ([0) operation, using the name of the service to obtain a reference (0).
Given a reference to a remote object, as with a local object, the client can then perform
method invocations on the object (O), and obtain results ().

2 Jgroup Overview

The Jgroup toolkit integrates object group technology and distributed objects based on
Java RMI [17]. In Jgroup, client objects interact with an object group implementing some
distributed service through an external group method invocation (EGMI) facility, as shown
in Figure 2. Jgroup hides the fact that services may be implemented as object groups rather
than single objects so that clients using them through EGMI need not be reprogrammed.
Servers making up the object group cooperate in order to provide a dependable version
of the service to their clients. This cooperation has to maintain the consistency of the
replicated service state and is achieved through an internal group method invocation (IGMI)
facility. Strong guarantees provided by Jgroup for both EGMI and IGMI in the presence of

Object Group

) Server

Client L

Server }

Server

Figure 2: Client to server object group communication using EGMI.

failures and recoveries (including partitioning and merging of the communication network)
greatly simplify the task of application developers.

Jgroup includes numerous innovative features that make it interesting as a basis for
developing modern network services:

e It exposes network effects to applications, which best know how to handle them. In
particular, operational objects continue to be active even when they are partitioned
from other object group members. This is in contrast to the primary partition ap-
proach, that hides as much as possible network effects from applications by limiting
activity to a single primary partition while blocking activity in all other partitions.
An important property of Jgroup is providing each object a consistent view of all
other objects that are in the same partition as itself. This knowledge is essential for
partition-aware application development where the availability of services is dictated
by application semantics alone and not by the underlying system.

e In Jgroup, all interactions within an object group implementing some service and
all requests for the service from the outside are based on a single mechanism — re-
mote method invocations. Jgroup is unique in providing this uniform object-oriented
interface for programming both servers and clients. Other object group systems typ-
ically provide an object-oriented interface only for client-server interactions while
server-server interactions are based on message passing. This heterogeneity not only
complicates application development, it also makes it difficult to reason about the
application as a whole using a single paradigm.

e Jgroup includes a state merging service as systematic support for partition-aware
application development. Reconciling the replicated service state when partitions
merge is typically one of the most difficult problems in developing applications to be
deployed in partitionable systems. This is due to the possibility of the service state
diverging in different partitions because of conflicting updates.

e The Autonomous Replication Management (ARM) [14] framework simplifies building
replicated distributed applications. This is achieved through a replication manager

4

that ensures to maintain specified replication levels, even in presence of failures.

3 Jgroup Specification

The Jgroup toolkit is composed by three integrated facilities: the partition-aware group
membership service (GMS), the group method invocation service (GMI service) and the
state merging service (SMS). In this section, we informally specify their behavior. The
formal specification may be found in a companion work [16].

3.1 The Partition-aware Group Membership Service

Groups are collections of server objects that cooperate in providing distributed services.
For increased flexibility, the group composition is allowed to vary dynamically as new
servers are added and existing ones removed. Servers desiring to contribute to a distributed
service become a member of the group by joining it. Later on, a member may decide to
terminate its contribution by leaving the group. At any time, the membership of a group
includes those servers that are operational and have joined but have not yet left the group.
Asynchrony of the system and possibility of failures may cause each member to have a
different perception of the group’s current membership. The task of a PGMS is to track
voluntary variations in the membership, as well as involuntary variations due to failures and
repairs of servers and communication links. All variations in the membership are reported
to members through the installation of views. Installed views consist of a membership list
along with a unique view identifier, and correspond to the group’s current composition as
perceived by members included in the view.

A useful PGMS specification has to take into account several issues. First, the service
must track changes in the group membership accurately and in a timely manner! such that
installed views indeed convey recent information about the group’s composition within each
partition. Next, we require that a view be installed only after agreement is reached on its
composition among the servers included in the view. Finally, PGMS must guarantee that
two views installed by two different servers be installed in the same order. These last two
properties are necessary for server objects to be able to reason globally about the replicated
state based solely on local information, thus simplifying significantly their implementation.
Note that the PGMS we have defined for Jgroup admits co-existence of concurrent views,
each corresponding to a different partition of the communication network, thus making it
suitable for partition-aware applications.

!Being cast in an asynchronous system, we cannot place time bounds on when new views will be
installed in response to server joins, leaves, crashes, recoveries or network partitionings and merges. All
we can guarantee is that new view installations will not be delayed indefinitely.

/7view

join 4
O
S1 L
join
oY
S2— \
join
S3 v Vv 3

S3 crashes

TQ

singleton view

Figure 3: Overview of how the membership service works with respect to crash failures.

join
s1—() A\ 'y
join
(D
Ss2—0 \/
join
S3 A D
~ v o -
S1 and S2 Communication
partitioned with S3 restored

from S3!

Figure 4. Overview of how the membership service works with respect to partitioning
failures.

3.2 The Group Method Invocation Service

Jgroup differs from existing object group systems due to its uniform communication in-
terface based entirely on group method invocations. Clients and servers alike interact
with groups by remotely invoking methods on them. In this manner, benefits of object-
orientation such as abstraction, encapsulation and inheritance are extended to internal
communication among servers.

Although they share the same intercommunication paradigm, we distinguish between
internal group method invocations (IGMI) performed by servers and external group method
invocations (EGMI) performed by clients. There are several reasons for this distinction:

e Visibility: Methods to be used for implementing a replicated service should not be
visible to clients. Clients should be able to access only the “public” interface defining
the service, while methods invoked by servers should be considered “private” to the
implementation.

e Transparency: Jgroup strives to provide an invocation mechanism for clients that is
completely transparent with respect to standard RMI. This means that clients are
not required to be aware that they are invoking a method on a group of servers rather
than a single one. Servers, on the other hand, that implement the replicated service
may have different requirements for group invocations, such as obtaining a result
from each server in the current view.

o Efficiency: Having identical specifications for external and internal group method
invocations would have required that clients become members of the group, resulting
in poor scalability of the system. In Jgroup, external group method invocations have
semantics that are slightly weaker than those for internal group method invocations.
Recognition of this difference results in a much more scalable system by limiting the
higher costs of full group membership to servers, which are typically far fewer in
number than clients.

When developing dependable distributed services, internal methods are collected to
form the internal remote interface of the server object, while external methods are collected
to form its external remote interface. A proxy object capable of handling group method
invocation, will be generated dynamically (at runtime) based on the remote interfaces of
the server object. This proxy enables a client (or server) object to communicate with the
entire group of server objects, as if it was a local or remote method invocation.

In order to perform an internal group method invocation, servers must obtain an ap-
propriate group proxy from the Jgroup runtime running in the local Java virtual machine.
Clients that need to interact with a group, on the other hand, must request a stub from
a registry service, whose task is to enable servers to register themselves under a group
name. Clients can then look up desired services by name in the registry and obtain their
stub. Currently, Jgroup support two registry services. The first one is called dependable
registry [15], and it derives from the standard registry included in Java RMI, while the

Object Group

Random selection
of server replicas
/ . oo T
‘

Group ~ Server-side
- proxy - - - - - - - proxy
Obtained from the Performs group
Dependable Registry internal multicast

Figure 5: Illustration of how the external group method invocation with multicast seman-
tics is performed using the group proxy obtained from the dependable registry and its
server-side counterpart. It is the server group members that bind with the dependable
registry whom then can generate the group proxy based on its known members.

second is based on the Jini lookup service. The dependable registry service is an integral
part of Jgroup and is implemented as a replicated service using Jgroup itself. The choice of
which registry service to use is left to developers; the dependable registry service is simpler
than the Jini based lookup service, as it requires complex deployment mechanisms of Jini.

In the following sections, we discuss how internal and external group method invocations
work in Jgroup, and how internal invocations substitute message multicasting as the basic
communication paradigm. In particular, we describe the reliability guarantees that group
method invocations provide. They are derived from similar properties that have been
defined for message deliveries in message-based group communication systems [7]. We
say that an object (client or server) performs a method invocation at the time it invokes
a method on a group; we say that a server completes an invocation when it terminates
executing the associated method. Method invocations are uniquely identified such that it
is possible to establish a one-to-one correspondence between performing and completing
them.

3.2.1 Internal Group Method Invocations

Unlike traditional Java remote method invocations, internal group method invocations
(IGMI) return an array of results rather than a single value. IGMI comes in two different
flavors: synchronous and asynchronous. In synchronous IGMI, the invoker remains blocked
until an array containing results from each server that completed the invocation can be
assembled and returned to it (from which servers result values are contained in the return
array is discussed below). There are many programming scenarios where such blocking
may be too costly, as it can unblock only when the last server to complete the invocation
has produced its result. Furthermore, it requires programmers to consider issues such as
deadlock that may be caused by circular invocations. In asynchronous IGMI, the invoker
does not block but specifies a callback object that will be notified when return values are
ready from servers completing the invocation.

i ; Invocation returns immediately All results available
Synchronous Invocation through the callback interface

[|
.\ .\

) \ M /) \ x "/
S2 \ s2 } = -
s3 s3 \ .

Figure 6: Synchronous IGMI method invo- Figure 7: Asynchronous IGMI method in-
cation. vocation with callback.

If the return type of the method being invoked is void, no return value is provided by
the invocation. The invoker has two possibilities: it can specify a callback object to receive
notifications about the completion of the invocation, or it can specify null, meaning that it
is not interested in knowing when the method completes.

Completion of IGMI by the servers forming a group satisfies a variant of “view syn-
chrony” that has proven to be an important property for reasoning about reliability in
message-based systems [8]. Informally, view synchrony requires two servers that install the
same pair of consecutive views to complete the same set of IGMI during the first view of
the pair. In other words, before a new view can be installed, all servers belonging to both
the current and the new view have to agree on the set of IGMI they have completed in the
current view. This enables a server to reason about the state of other servers in the group
using only local information such the history of installed views and the set of completed
IGMI. Clearly, application semantics may require that servers need to agree on not only
the set of completed IGMI but also the order in which they were completed. In Jgroup,
different ordering semantics for IGMI completions may be implemented through additional
layers on top of the basic group method invocation service.

We now outline some of the main properties that IGMI satisfy. First, they are live: an
IGMI is guaranteed to terminate either with a reply array (containing at least the return
value computed by the invoker itself), or with one of the application-defined exception
contained in the throws clause of the method. Furthermore, if an operational server S
completes some IGMI in a view, all servers included in that view will also complete the
same invocation, or S will install a new view. Since installed views represent the current
failure scenario as perceived by servers, this property guarantees that an IGMI will be
completed by every other server that is in the same partition as the invoker. IGMI also
satisfy “integrity” requirements whereby each IGMI is completed by each server at most
once, and only if some server has previously performed it. Finally, Jgroup guarantees that
each IGMI be completed in at most one view. In other words, if different servers complete
the same IGMI, they cannot complete it in different views. In this manner, all result values
that are contained in the reply array are guaranteed to have been computed during the

/7 Method invocation

S1

S2

S3 1

S4

S4 crashes

Figure 8: Invalid view synchrony execution.

S1

N

Figure 10: Invalid view synchrony execu-
tion.

S4 crashes

10

/7 Method invocation

S1)

S2

S3

S4

S4 crashes

Figure 9: A valid view synchrony execution.

S1

S2

S3

sS4 > PDDDI e VYNNI NN 1—3;‘,3

S4 crashes

Figure 11: A valid view synchrony execu-
tion.

J—table.lookup("Name"); Ftable.bind("Name", obj);

A N N
53 i BN

Figure 12: EGMI anycast method invoca- Figure 13: EGMI multicast method invo-
tion (read operation). cation (write operation).
same view.

3.2.2 External Group Method Invocations

External group method invocations (EGMI) that characterize client-to-server interactions
are completely transparent to clients that use them as if they were standard remote method
invocations. When designing the external remote interface for a service, an application
developer must choose between the anycast and the multicast invocation semantics. An
anycast EGMI performed by a client on a group will be completed by at least one server
of the group, unless there are no operational servers in the client’s partition. Anycast
invocations are suitable for implementing methods that do not modify the replicated server
state, as in query requests to interrogate a database. A multicast EGMI performed by a
client on a group will be completed by every server of the group that is in the same
partition as the client. Multicast invocations are suitable for implementing methods that
may update the replicated server state.

The choice of which invocation semantics to associate with each method rests with the
programmer of the distributed service when designing its external remote interface. The
default semantics for an external method is anycast. Inclusion of the tag McastRemoteEx-
ception in the throws clause of a method signals that it needs to be invoked with multicast
semantics. When generating the stub for an external interface, the group manager will
analyze the throws clause using reflection (c¢f. java.lang.reflect) and produces the ap-
propriate code for the stub object.

Our implementation of Jgroup guarantees that EGMI are live: if at least one server
remains operational and in the same partition as the invoking client, EGMI will eventu-
ally complete with a reply value being returned to the client. Furthermore, an EGMI is
completed by each server at most once, and only if some client has previously performed
it. These properties hold for both anycast and multicast versions of EGMI. In the case of

11

multicast EGMI, Jgroup also guarantees view synchrony as defined in the previous section.

Internal and external group method invocations differ in an important aspect. Whereas
an IGMI, if it completes, is guaranteed to complete in the same view at all servers, an EGMI
may complete in several different concurrent views. This is possible, for example, when
a server completes the EGMI but becomes partitioned from the client before delivering
the result. Failing to receive a response for the EGMI, the client’s stub has to contact
other servers that may be available, and this may cause the same EGMI to be completed
by different servers in several concurrent views. The only solution to this problem would
be to have the client join the group before issuing the EGMI. In this manner, the client
would participate in the view agreement protocol and could delay the installation of a new
view in order to guarantee the completion of a method in a particular view. Clearly, such
a solution may become too costly as group sizes would no longer be determined by the
number of server objects (degree of replication of the service), but by the number of clients,
which could be very large.

The fact that EGMI may complete in several different concurrent views has important
consequences for dependable application development. Consider an EGMI that is indeed
completed by two different servers in two concurrent views due to a partition as described
above. Assume that the EGMI is a request to update part of the replicated server state.
Now, when the partition is repaired and the two concurrent views merge to a common view,
we are faced with the problem of reconciling server states that have evolved independently
in the two partitions. The problem is discussed in length below but what is clear is that a
simple-minded merging of the two states will result in the same update (issued as a single
EGMI) being applied twice. To address the problem, Jgroup assigns each EGMI a unique
identifier. In this manner, the reconciliation protocol can detect that the two updates that
are being reported by the two merging partitions are really the same and should not both
be applied.

One of the goals of Jgroup has been the complete transparency of server replication to
clients. This requires that from a clients perspective, EGMI should be indistinguishable
from standard Java RMI. This has ruled out consideration of alternative definitions for
EGMI including multi-value results or asynchronous invocations.

3.3 The State Merging Service

While partition-awareness is necessary for rendering services more available in partitionable
systems, it can also be a source of significant complexity for application development. This
is simply a consequence of the intrinsic availability-consistency tradeoff for distributed
applications and is independent of any of the design choices we have made for Jgroup.

Being based on a partitionable GMS, Jgroup admits partition-aware applications that
have to cope with multiple concurrent views. Application semantics dictates which of
its services remain available where during partitionings. When failures are repaired and
multiple partitions merge, a new shared state has to be constructed. This new state
should reconcile, to the extent possible, any divergence that may have taken place during
partitioned operation.

12

Elected as coordinator

/ for partition {S1,S2}
S1 @ putState() @
\ / getState() @
(2
S2 I ><>< N\
[T
S3 \ N
s4 PR

\ Elected as coordinator

for partition {S3,S4}

Figure 14: A state merge scenario without failure.

Generically, state reconciliation tries to construct a new state that reflects the effects of
all non-conflicting concurrent updates and detect if there have been any conflicting concur-
rent updates to the state. While it is impossible to automate completely state reconciliation
for arbitrary applications, a lot can be accomplished at the system level for simplifying the
task [5]. Jgroup includes a state merging service (SMS) that provides support for build-
ing application-specific reconciliation protocols based on stylized interactions. The basic
paradigm is that of full information exchange — when multiple partitions merge into a new
one, a coordinator is elected among the servers in each of the merging partitions; each co-
ordinator acts on behalf of its partition and diffuses state information necessary to update
those servers that were not in its partition. When a server receives such information from a
coordinator, it applies it to its local copy of the state. This one-round distribution scheme
has proven to be extremely useful when developing partition-aware applications [6, 15].

SMS drives the state reconciliation protocol by calling back to servers for “getting”
and “merging” information about their state. It also handles coordinator election and
information diffusion. To be able to use SMS for building reconciliation protocols, servers
of partition-aware applications must satisfy the following requirements:

e cach server must be able to act as a coordinator; in other words, every server has to
maintain the entire replicated state and be able to provide state information when
requested by SMS;

13

Elected as coordinator

/ for partition {S1,S2}

S1 /\ @ putState() @

S2 &Y
AN
S3 \ &
\ Elected as coordinator

for partition {S3}

S4
S4 crashes

\ Elected as coordinator

for partition {S3,S4}

Figure 15: State merge scenario with coordinator failure.

e a server must be able to apply any incoming updates to its local state.

These assumptions restrict the applicability of SMS. For example, applications with high-
consistency requirements may not be able to apply conflicting updates to the same record.
Note, however, that this is intrinsic to partition-awareness, and is not a limitation of SMS.

In order to elect a coordinator, SMS requires information about “who can act on behalf
of whom”. At a given time, we say that server sy is up-to-date with respect to server sy if
all information known by sy is known also by s;. A server s; may act as a coordinator on
behalf of a server sy if s; is up-to-date with respect to sy. Initially, a server is up-to-date
only with respect to itself. After having received information from other servers through
the execution of its “merging” callback method, it can become up-to-date with respect
to these servers. On the other hand, a server ceases to be up-to-date with respect to
other servers upon the installation of a new view excluding them. Consider for example a
server s installing a view v that excludes server s,. Since the state of sy may be evolving
concurrently (and inconsistently) with respect to s;, SMS declares s; as being not up-to-
date with respect to s;. The main requirement satisfied by SMS is liveness: if there is a
time after which two servers install only views including each other, then eventually each
of them will become up-to-date with respect to the other (directly or indirectly through
different servers that may be elected coordinators and provide information on behalf of one
of the two servers). Another important property is agreement: servers that install the same
pair of views in the same order are guaranteed to receive the same state information through
invocations of their “merging” methods in the period occurring between the installations
of the two views. This property is similar to view synchrony, and like view synchrony may
be used to maintain information about the updates applied by other servers. Finally, SMS

14

satisfies an integrity property such that SMS will not initiate a state reconciliation protocol
without reasons (e.g., if all servers are already up-to-date).

4 Building and Running Jgroup Applications

While developing Jgroup, we make use of the Jakarta project’s build tool called Ant [2].
This allows us to both compile and run our software with very little hassel. In this section
we will try to explain how to use Ant to build and run Jgroup applications.

To check if your local machine has Ant installed, you may type the following command:

ant -help

If the above command reports something like, command not found, you will need to
download? and install the ant tool on your local machine before continuing. The Ant
program can be compared with the UNIX make tool, but it is specially designed for building
Java programs and you specify all rules and targets using XML. To use Ant for building
a project, the root directory of the project should contain the build.xml file, describing
the various targets needed to compile a project, entirely or in part.

4.1 Building Jgroup

The most important build (compile) targets in the Jgroup build.xml file is summarized
below:

e build target will check which files needs to be built and builds only those. build is the
default target, and will be used by ant, if no target is specified.

e all is used to rebuild all files, even those that do not need to be rebuilt.
e clean has the obvious meaning to remove all files relevant to the build process.
e doc is used to create javadoc documentation for Jgroup.

e cleandoc removes all files related to javadoc documentation.

So in order to rebuild Jgroup from scratch, the following command must be executed
from the Jgroup root directory:

ant all

You may also execute this from other directories, but then you must specify which
build.xml file to use:

ant -buildfile ~/Jgroup2/build.xml all

2Ant can be downloaded from http://ant. jakarta.apache.org/

15

4.2 Running Jgroup Applications

To simplify running the various Jgroup applications provided, we have specified targets for
the programs included with Jgroup, some of which are summarized below:

e dregistry creates an instance of the dependable registry provided with Jgroup on the
local machine. More than one instance of the registry may be started within the
distributed system, thus increasing the fault tolerance of the registry service.

e helloserver start an instance of the hello server class on the local machine. More than
one instance of the hello server may be executing in the distributed system, and they
will all join the same object group.

e helloclient executes a hello client on the local machine. This will result in the client
contacting one of the hello server instances that are running in the distributed system.

Note that most of the programs provided with Jgroup requires an XML configuration
file describing the distributed system in which the Jgroup application should execute. The
location of this file is typically in the Jgroup2/config directory, but you may change
this location for all applications using the system.configuration.url property in the
build.xml file, or you may edit each target separately.

An example run with the helloserver

To demonstrate a very simple application that makes use of Jgroup, first ensure that the
Jgroup2/config/config.xml file contains the correct domain and a set of hosts on which
you wish to run this application. Only one domain is required, but at least three hosts are
needed to run this example.

Initially, the dependable registry should be started on one of the hosts specified in the
distributed system configuration:

ant dregistry

Note that additional replicas (instances) of the registry may be started on other ma-
chines in the distributed system, but this is not required for the example. Next, two or more
hello server repliacs must be started on distinct hosts that is specified in the distributed
system.

ant helloserver

Assuming that both the dependable registry and all hello server replicas are running,
we are now ready to start any number of hello clients, to invoke the hello server replicas.
Note that the host on which to run the hello clients does not need to be specified in the
distributed system configuration.

ant helloclient

16

4.3 Adding a new Jgroup Application

If you wish to develop a new application based on Jgroup, the following will explain how
you can add a new run target to the build.xml file. We do not explain how to compile
your application, but there are numerous approaches you can take; the simplest being to
add your application under the Jgroup directory tree, and it will be compiled together with
Jgroup itself. Another approach is to add a separate compile target for your application.
For details see the build target in the build.xml file, or refer to the Ant documentation [3].

The simplest approach for adding a new run target is to cut and paste an existing
target; thus it is convenient to look at the target for the hello server to determine which
parts needs to change for your application:

<target name="helloserver" depends="build">
<java classname="jgroup.test.hello.HelloServer"
fork="true" classpathref="run.path">

<sysproperty key="java.compiler" value="${java.compiler}"/>

<sysproperty key="jgroup.debug.dir" value="${debug.dir}"/>

<sysproperty key="jgroup.debug.fileLevel" value="${debug.fileLevel}"/>

<sysproperty key="jgroup.debug.outLevel" value="${debug.outLevell}"/>

<arg value="${system.configuration.url}"/>

</java>
</target>
The target name is a unique name within a build file and serves to identify the target.
Also notice that the helloserver target depends on the build target, which basically means
that Ant will check if it needs to compile something before trying to run the helloserver.
Within the helloserver target, we use the java tag, specifying the class name for the hello
server. For details about the java tag, please refer to the Ant documentation [3]. The
sysproperty is mainly used to pass various attributes to the jgroup debugger, while the arg
is used to pass command line arguments to the hello server. The parts that needs to be
modified for a new application will typically involve the target name and classname, and
possibly add more arg value lines. Most other parts will remain identical for all run targets.
The classpathref attribute of the java tag is used to specify the class path for the hello

server application. This is done in a separate part of the build.xml file, and this is used
by most other run targets as well:

<path id="run.path">

<pathelement location="classes"/>

<pathelement location="${lib}/crimson.jar"/>
</path>

This is simply a listing of all the class path elements required to run the hello server

application. If your application requires another library (jar file) or if you keep your
application in another directory than the classes directory in which the Jgroup classes
resides, you will need to add your own directory or jar file to the run.path.

5 Application Examples

In this section we present two Jgroup example applications.

17

package jgroup.test.hello; package jgroup.test.hello;

public interface Hello public interface InternalHello
extends jgroup.core.ExternalGMIListener extends jgroup.core.InternalGMIListener
{ {
Answer sayHello() public Object time()
throws java.rmi.RemoteException; throws java.rmi.RemoteException;
} }
Figure 16: The external Hello interface. Figure 17: The InternalHello interface.

5.1 The Hello Example

The hello application is a very simple example meant to get you started with the most
basic Jgroup services. The application is composed of a set of servers that accepts client
requests and responds with a hello message, the time of the reply and the name of the
server that responded. To enable clients to communicate with a group of hello servers,
the servers must bind their local reference to a group proxy that is stored in the registry
service.

5.1.1 The Hello Server

Designing a replicated Jgroup service requires that all methods of the service be added
to an external interface, allowing clients to invoke these methods on the group of servers.
External GMI interfaces must extend the ExternalGMIListener, and each of its methods must
specify the exception RemoteException in its throws clause. The Hello interface shown in
Figure 16, contains only method sayHello and returns an Answer object (see Figure 18) to
clients invoking that method.

Notice that the Answer class implements the Serializable interface. This is the standard
approach for passing an object “by value” over the network. The process of serializing
something is merly a way to convert an object instance (in memory form) into a stream
of bytes that can be passed over the network. By implementing the Serializable interface,
the Answer class actually inherits a few methods from the Object class which provides the
default serialization. The default serialization provided by the Object class, will serialize
all the fields of the Answer class so that they can be transfered over the network, and be
reinstated in an empty Answer object once it has been transfered.

Figure 19 shows the code for the hello server. The server class has been divided into
sections to simplify its understanding. As can be seen from the implements clause, the
server implements the Hello interface (Figure 16) and the InternalHello interface (Figure 17).
These are used for external and internal group method invocations, respectivly. In addi-
tion, the server also implements the MembershipListener interface, enabling the server to be
notified of changes in the membership of the group.

The only tasks of the main method of the HelloServer is to parse the system configuration
file, and to create an instance of the HelloServer on the local machine. The constructor will
prepare the answer message, and will obtain a reference to the local services (layers) from
the group manager. In particular the membership and external GMI services are used by

18

package jgroup.test.hello;

public class Answer
implements java.io.Serializable

private String message;

/** Time of the last view that has been installed by the group members */
private Object[] time;

public Answer(String message)
{

this.message = message;

}

public void setTime(Object[] timeValues)
{
time = timeValues;

3

public String toString()
{
StringBuffer buf = new StringBuffer();
buf . append (message) ;
if (time != null) {
for (int i = 0; i < time.length; i++) {
buf . append (time[i]);
buf . append (" ");

}
return buf.toString();

Figure 18: The Answer class.

19

package jgroup.test.hello;

import java.rmi.x;

import jgroup.util.x*;
import jgroup.core.x*;

public class HelloServer

{

implements Hello, InternalHello, MembershipListener

/** Stores the answer for replying to external invocations */
private Answer answer;

/** The internal group proxy for the HelloServer */
private InternalHello internalHello;

[1117177717777777777777777777777/77777777777777/77777777/777777/7/7777/77777777
// Main method (initialize the HelloServer object)

///

public static void main(String argv([])
throws Exception
{

String configURL = null;

for (int i = 0 ; i < argv.length ; i++) {
if (argv([i].startsWith("-")) {
System.err.println("Unknown option " + argv[il);
Abort.usage("helloserver <configURL>");
} else {
if (configURL != null) {
System.err.println("Hostfile already specified");
Abort.usage("helloserver <configURL>");
}
configURL = argv[i];
}
}
if (configURL == null) {
System.err.println("You must specify an configURL");
Abort.usage("helloserver <configURL>");
}
HelloServer obj = new HelloServer(configURL);
}

Figure 19: The HelloServer class.

20

[171777777777777777/77/777777777/777/77777777777/77/777/777/77777777/77777/7777777777
// Constructor for the HelloServer

LITI1117777777777777777777777777777777777770777777777777777777777777777/777777

public HelloServer(String configURL)
throws Exception

{
/* Prepare the answer for replying to external invocations. */
answer = new Answer("Hello from " + Network.getLocalHostName());

/* Obtain the group manager for this server object */
GroupManager gm = GroupManager.getGroupManager (configURL, this);

/* Obtain proxies for the services required by the HelloServer */
MembershipService pgms =

(MembershipService) gm.getService(MembershipService.class);
ExternalGMIService egmis =

(ExternalGMIService) gm.getService(ExternalGMIService.class);
internalHello = (InternalHello) gm.getService(InternalHello.class);

/* Join the group and bind the server in the dependable registry */
pgms.join(12);

egmis.bind("Jgroup/HelloServer") ;

System.out.println("Server ready and bound to the reliable registry");

3

LITIIT177/777777
// Methods from the Hello interface (External Group Method Invocation)

[I1117717777777777777717777

public Answer sayHello()
throws RemoteException
{
return answer;

3

L1710 7777777777777777777777770777
// Methods from the InternalHello interface (Internal Group Method Invocation)

II1111777/777777

public Object time()
throws RemoteException

{

return new Long(System.currentTimeMillis());

}

Figure 20: The HelloServer class.

21

111171777177 7777777/7777777777777/77777777777777/777777/77/777777/7/777777777777
// Methods from MembershipListener

///

public void viewChange(View view)
{
System.out.println("View id: " + view.getVid());
MemberId[] members = view.getMembers();
for (int i = 0; i < members.length; i++)
System.out.println("Member[" + i + "]: " + members[i]);

try {

/*
* The time() method is defined in the InternalHello interface and
* is marked as a group internal method. By definition, all group
* internal methods will return an array of values instead of a
* single value as with standard remote (or external group) method
* calls.
*/

Object[] objs = (Object[]) internalHello.time();

for (int 1 = 0; i < objs.length; i++)

System.out.println("Time: " + objs[i]);

answer.setTime (objs) ;
} catch (Exception e) {

e.printStackTrace();

}

public void prepareChange() { }

public void hasLeft() { }
}

Figure 21: The HelloServer class.

22

package jgroup.test.hello;

import jgroup.util.x*;
import jgroup.core.registry.*;

public class HelloClient
{

public static void main(String argv[])
throws Exception

{
String configURL = null;
for (int i = 0 ; i < argv.length ; i++) {
if (argv[i].startsWith("-")) {
System.err.println("Unknown option " + argv[i]);
Abort.usage("helloclient <configURL>");
} else {
if (configURL != null) {
System.err.println("configURL already specified");
Abort.usage("helloclient <configURL>");
X
configURL = argv[i];
3
by
if (configURL == null) {
System.err.println("You must specify an configURL");
Abort.usage("helloclient <configURL>");
3
/*
* Obtain a proxy for the depedable registry running in the
* distributed system described in the configURL on the specified port;
*/
DependableRegistry registry = RegistryFactory.getRegistry(configURL) ;
/*
* Retrieve a proxy for an object group implementing the Hello
* interface registered under the name "Jgroup/HelloServer".
*/
Hello server = (Hello) registry.lookup("Jgroup/HelloServer");
/*
* Invoking method sayHello, which returns an object of type Answer
* containing a string produced by the contacted object plus
* the time at which the groups members installed the last view.
*/
Answer answer = server.sayHello();
System.out.println(answer) ;
b
}

Figure 22: The HelloClient class.

23

the server join its object group and bind its reference with the dependable registry, respec-
tivly. Notice that the binding of the server reference is performed through the external
GMI layer instead of directly through a registry instance. This is basically a convenient
approach, since we need to access all the dependable registry replicas. In addition to
the above, the constructor also obtains a proxy for the HelloServer group, enabling them
communicate with each other through group internal method invocations.

The implementation of the external method sayHello of the Hello interface is simply to
return the already prepared answer, while implementing the internal method time of the
InternalHello interface is to return the local time of this HelloServer replica. So when another
HelloServer replica invokes the time method, it will obtain one reply from each replica. This
last part is exactly what is done in the implementation of the MembershipListener method
viewChange. For each view change of the hello server group, the internal method time is
invoked and an array of results are returned. These are incorporated with the local Answer
object through the setTime method. Thus, the latest time values (the time when the last
view was installed) can also be seen by clients invoking the sayHello method on the external
Hello interface.

The HelloClient implementation is very simple (Figure 22). Similarly to the server, also
the client needs to parse the command line arguments to obtain the system configura-
tion file, which is needed in order to determine the location of the dependable registry.
Once a reference to the dependable registry has been obtain, the client may perform
a lookup in order to obtain a reference to the server based on the pre-assigned name
(“Jgroup/HelloServer”). After obtaining this reference, the client may invoke the method
sayHello at will. The HelloClient will simply print the Answer object obtained from the sayHello
invocation and exit.

5.1.2 The workings of internal group method invocation

Below we detail the inner workings of the internal group method invocation (IGMI) layer
of Jgroup. Figure 23 sketch how Jgroup handles an invocation on an internal proxy object.
Once the HelloServer requests a group manager object using the static method GroupMan-
ager.getGroupManager(), the group manager will examine the interfaces implemented by the
HelloServer and determine that it in fact implements an internal interface. This is since the
InternalHello interface extends the InternalGMlIListener interface. Given this fact, the group
manager will construct an IGMI proxy dynamically (at runtime) that implements the In-
ternalHello interface. The exact details of how this proxy is generated is outside the scope of
this tutorial; Jgroup simply use the proxy mechanism found in java.lang.reflect.Proxy. This
proxy is shown with shaded background in Figure 23. Next, the HelloServer can obtain a
reference to this dynamically generated proxy by invoking the getService(InternalHello.class)
method on the group manager.

Now that the server has an IGMI reference, it can perform invocations on all servers
using a single method invocation like this one:

Object[] objs = (Object[]) internalHello.time();

24

Serverl Server2

S1 S2
time() time()
0| time() ® | time()
O ime()
internalHello internalHello
proxy proxy

@ | invoke(proxy, method, arg[])

InvocationHandler InvocationHandler

A A
@ deliverStream(method, argl[]) © deliverStream(method, arg][])
‘ [3) mcast(method, arg[] ‘

MulticastService MulticastService

Figure 23: Details of the workings of the InternalHello proxy.

Such an invocation will cause a chain of events in the Jgroup layers, as shown in
Figure 23. The actual invocation occur at [J. The dynamically generated proxy simply
converts the time() invocation into an invoke() method invocation on an InvocationHandler
implementation (O0). The InvocationHandler used for IGMI is called IntGroupHandler and is
specialized for handling internal method invocation within an object group. It will perform
a multicast (0,00) to all IntGroupHandler layers that is member of this group (). Once
a member’s IntGroupHandler has received such an invocation, it will perform the actual
invocation on the server implementation ([0), and return the results back following the
reverse path.

5.2 A Dependable Computation Service

In the following, we present a simple application example exploiting most of the charac-
teristics of Jgroup. The service being performed is a dependable computation service that
executes arbitrary tasks requested by clients. The service is composed of a group of servers
that accept request from clients and coordinate the execution of tasks in order to guarantee
that each task is completed and no task is executed twice (whenever possible). When a
task is completed, one of the servers calls back the client that requested the execution and
notifies the result to it.

Section 5.2.1 and Section 5.2.2 will show how to write the server and the client ocde of

25

import java.rmi.;
import jgroup.*;

public interface ComputeService extends ExternalGMIListener {

public void compute(Task t, ResultListener rl)
throws RemoteException, McastRemoteException;

}
public interface Task {
public void init(String[] args);
public Object run();
}
public interface ResultListener extends Remote {

public void result(Object result)
throws RemoteException;

Figure 24: The ComputeService interface and its related interfaces.

the computation service application. The purpose of this example is to show how to use
the Jgroup API to build a simple replicated application, and not how to build a production
version of such application. In other word, the rest of this section is concentrated on the
details of the Jgroup API, and not on the details of the application. A more complete
version of this example will eventually be available for download and testing.

5.2.1 The Computation Server

The first step to accomplish when designing a replicated Jgroup service is to create the
external interface containing the methods that can be invoked by clients. In our example,
this interface is called ComputeService and is shown in Figure 24. In order for an interface
to be an external GMI interface, it must extend ExternalGMIListener; furthermore, each of
its methods must contain exception RemoteException in its throws clause. Interface Com-
puteService contains only method compute, used by clients to request the execution of a
task. By adding exception McastRemoteException to the throws clause of method compute,
we force its execution following the multicast semantics. In this way, servers in the same
partition will receive the same set of compute invocations, and will be able to maintain the
same collection of tasks to be performed. Having the same knowledge about tasks, servers
may exploit the state merging service in order to reconstruct a consistent state after the
end of a partitioning; furthermore, the workload can be easily subdivided among servers
in each of the partitions.

Method compute has two arguments; the first is a task object containing the code to
be computed, the second is an object that will listen for the result of the task. These

26

import java.rmi.;
import jgroup.*;

public interface InternalComputeService
extends InternalGMIListener {

public void completed(IID id, Object result);

Figure 25: The InternalComputeService class.

objects must implement interfaces Task and ResultListener, respectively (see Figure 24).
Task extends interface Serializable, meaning that task objects are passed “by value” to the
computation service. ResultListener, on the other hand, extends interface Remote, meaning
that result listeners are passed “by reference” to the computation service. After having
created a task, a client invokes method init on it in order to initialize it with an array of
strings. This design enables us to write a generic client capable to request the execution
of arbitrary tasks initialized with command-line arguments. Method run of Task is invoked
by the server after having received the task through a compute invocation. Method run
performs some computation and returns an object containing the result. This result is
delivered to the client by performing a remote method invocation of result on the result
listener provided when invoking compute.

After having defined the external interface, the next step is to define the internal in-
terface containing the methods invoked by servers to communicate among themselves.
Figure 25 shows interface InternalComputeService used in our example. This interface con-
tains only method completed, used to communicate the result of a task to the other servers
in a group. A result is maintained by a server until it is delivered to the corresponding
result listener. Tasks are identified using invocation identifiers IID provided by Jgroup.

At this point, we are ready to write the server implementation class, which is illustrated
in Figure 26. Our implementation takes advantage of each of the facilities provided by
Jgroup, i.e. the group membership service, the state merging service, and the internal and
external group method invocation service. In order to receive event notifications originated
by these services, a set of interfaces needs to be implemented by the server class. Interface
MembershipListener is used to receive view changes, while interface MergingListener contains
the callbacks used by SMS. Interfaces ComputeService and InternalComputeService are used to
receive group method invocations performed by clients and servers, respectively.

The Constructor

The constructor for a computation server is very simple. First of all, a new Workload object
is initialized. Tasks to be computed will be stored in this data structure. In order to access
the services provided by Jgroup, a server must first notify Jgroup of its existance, and it
must provide one or more objects capable to listen to Jgroup event notifications. This is
performed by invoking static method getGroupManager on class GroupManager. This method
takes two parameters: the former is an array of configuration objects, while the latter is

27

an array of listener objects.

For the purpose of this example, the configuration array contains only a DistributedSys-
tem object. A distributed system describes the set of hosts in which the servers will be
run. Several constructors for distributed systems exists (see Section 6.4.1); here, we use a
constructor taking a simple string argument containing the name of an hostfile. An hostfile
is a text file containing a list of host names separated by a carriage return.

The listener array contains only a reference to the server itself using the keyword this.
In this way, each event notification related to the group membership service, the state
merging service and the group method invocation service (i.e., the interfaces implemented
by ComputeServer) are intercepted by the server.

The next step is to obtain explicit references to the services requested by invoking
method getService on the group manager. These references will be used in order to join
and leave the group, to obtain information about external group method invocations and
to perform internal group method invocations. In the example, the method is invoked four
times to obtain references to GMS, the external and internal GMI services and a proxy
for the internal interface defined earlier. The class object of the requested service interface
is passed as an argument to method getService. Note that the no reference for SMS is
requested. The reason for this is that servers cannot voluntarily interact with SMS, but
only listen to callback invocations originated by it.

After having obtained these references, a group must be explicitly joined. This oper-
ation is subdivided in two parts. First, we must inform the other servers in the group to
be joined. This operation is performed by invoking method join on the GMS reference.
Second, we must inform possible clients that this server is part of a group and is available
to accept group method invocations. This is performed by invoking method bind on the
external GMI service reference, which takes care of registering the server under a group
name on the dependable registry service running in the distributed system specified when
invoking method getGroupManager.

Methods of the External and Internal Interfaces

As explained above, ComputeServer must implement method compute contained in the ex-
ternal interface of the service. The code associated to this method looks as follows:

public void compute(Task t, ResultListener rl) throws RemoteException {
IID id = externalService.getIdentifier();
workload.insert(t, id, rl);

}

The first action of compute is to obtain an identifier for the invocation by invoking
method getldentifier on the external GMI service. This identifier is used among servers
composing the group to uniquely identify a task. Then, the task, the invocation identifier
and the result listener are inserted in the workload object initialized at the beginning.

When a server completes the execution of a task (see Section 5.2.1), it informs other
servers in the group by performing an internal invocations of method completed and speci-

28

import java.rmi.*;
import jgroup.*;

public class ComputeServer
implements MembershipListener, MerginglListener, ComputeService,
InternalComputeService {

MembershipService membershipService;
ExternalGMIService externalService;
InternalGMIService internalService;
InternalComputeService groupProxy;

// Comstructor

public ComputeServer()
throws Exception
{

Workload workload = new Workload();

Object[] listeners = new Object[] { this };
Object[] config = new Object[] { new DistributedSystem("hostfile") };
GroupManager gm = GroupManager.getGroupManager (config, listeners);
membershipService =

(MembershipService) gm.getService(MembershipService.class);
externalService =

(ExternalGMIService) gm.getService(ExternalGMIService.class);
internalService =

(InternalGMIService) gm.getService(InternalGMIService.class);
groupProxy =

(InternalComputeService) gm.getService(InternalComputeService.class);

membershipService. join();
externalService.bind ("ComputeService");

3

// Methods from MembershipListener
public void viewChange(View v) { /* %/ }

// Methods from Merginglistener
public Object getState(MemberId[] dests) { return null;/* */ }
public void putState(Object status, MemberId[] sources) { /* */ }
// Methods from ComputeService
public void compute(Task t, ResultListener r)

throws RemoteException, McastRemoteException { /* */ }

// Methods from InternalComputeService
public void completed(IID id, Object result) { /* */ }

Figure 26: The ComputeServer class.

29

fying the identifier and the result of the completed task. Method completed stores the result
in the workload object:

public void completed(IID id, Object result) {
workload.addResult(id, result);
}

The Execution Thread

In order to execute the requested tasks, an execution thread needs to be initialized. Aim
of this thread is to request a task to be performed from the workload object, execute it
and communicate the result to the other servers. The run method of the execution thread
look as follows:

public void run() {
while (true) {
IID id = workload.next();
Task t = workload.getTask(id);
ResultListener rl = workload.getListener(id);
Object result = t.run();

rl.result(result);
groupProxy.completed(id, result);

The first instruction in the loop obtains the identifier of the task to be computed. We
assume that method next of Workload is capable to distribute the task executions in order
that two servers always reachable between themselves never execute the same task. Once
obtained the identifier, we can request the actual task object and the result listener to
which the result has to be notified. After the result has been computed, it is transmitted
to the client by invoking result on the result listener, and to the other servers by invoking
completed on the server proxy containing the object. After these operations, the loop starts
again.

Methods of the MembershipListener Interface

When a new view is installed, method viewChange is invoked on each computation server. A
new View object is delivered to the application, containing information on which members
are in the current view. In our example, method viewChange notifies the Workload object,
in order that the workload is redistributed among the members currently operational and
reachable. After this, it obtains the list of members in the current view by invoking
getMembers on the View object and print it on the console for logging purposes.

public Object viewChange(View view) {
workload.redistribute(view) ;
MemberId[] members = view.getMembers();
for (int i=0; i < members.length; i++)
System.out.println(members) ;

30

Methods of the MergingListener Interface

In order to use SMS, methods getState and putState of MergingListener must be implemented.
Their implementation looks as follows:

public Object getState(MemberId[] dests) {
return workload;

public void putState(Object status, MemberId[] sources) {
workload.merge ((Worload) status);

}

Method getState is invoked when a server has been elected coordinator for a partition, i.e.
responsible for update servers that were previously partitioned. In a production version of
this application, only the information needed to update members listed in dests needs to be
provided. Here, we simply return the entire workload object. This object is communicated
to other servers through the invocation of method putState, which merge the information
contained in the received workload with that contained in its local workload.

The Workload class

In this example, we have hidden the application details in the implementation of the Work-
load class. This class must be able to maintain information about the set of completed
task; to store this information on stable storage, if necessary; to distribute the work among
operational and reachable servers, avoiding duplicated executions of the same task when-
ever possible. Aim of this tutorial is to show the basic API of Jgroup, and not to discuss
which is the best implementation of the Workload class. Interested reader may download
the complete application and/or read related documentation [6].

5.2.2 The Client

The client class (illustrated in Figure 27) is very simple. The code is enclosed in the main
method. In the same way as every client accessing a non-replicated remote object, the
first action to accomplish is to obtain a reference to the computation service. This is
done by obtaining a reference to a dependable registry service through the invocation of
static method getRegistry of class RegistryFactory, and then invoking method lookup on this
reference. getRegistry requires a string representing the name of an hostfile containing the
description of the distributed system in which the dependable registry service is running.

Once obtained this reference, the code of the client does not differ from the code of
a client accessing a non-replicated service with the same interface as our computation
service. First, a task object is created, using the class name provided in the command
line. This task is initialized using the following arguments. Then, a result listener object
is created. Class ResultListenerlmpl implementing interface ResultListener is illustrated in the
same figure. Method result of ResultListenermpl is invoked by the computation service when
the result has been computed; method getResult is invoked by the client and waits until a
result is available.

31

import java.rmi.x;
import jgroup.core.registry.*;

public class ComputeClient {
public static void main(String[] args) throws Exception {

DependableRegistry reg = RegistryFactory.getRegistry(args[0]);
ComputeService srv = (ComputeService) reg.lookup("ComputeService");

Task t = (Task) Class.forName(args[1]).newInstance();
String[] argv = new Stringlargs.length-2];
for (int i=0; i < argv.length; i++)
argv[i] = args[i+2];
t.init(argv);

ResultListenerImpl rl = new ResultListenerImpl();
srv.compute(t, rl);
Object result = rl.getResult();
System.out.println(result);
}
}

public class ResultListenerImpl extends UnicastRemoteObject
implements ResultListener {

Object result;
public ResultListenerImpl() throws RemoteException;

public synchronized void result(Object result) throws RemoteException {
this.result = result;
notify();

public synchronized Object getResult() {
while (result == null)
try { wait(); } catch (Exception e) { };
return result;
}
}

public class CalcFactorial implements Task, Serializable {
private int value;

public void init(Stringl[] args) {
value = Integer.parselnt(args[0])
}

public Object run() {
double result = 1;
for (int i=1; i<=value; i++)
result *= i;
return new Double(result);
}
}

Figure 27: The client code.

32

Once created a result set, the next step is to invoke method compute on the computation
service, passing the task and the result listener. Then, the client invokes getResult to obtain
the result and print it on the console.

5.2.3 Deploying the Computation Service Application

In order to deploy an application based on Jgroup, several steps needs to be performed.
The first step is to start one or more instances of the dependable registry service. This
may be obtained by executing the dregistry ant target, as follows:

ant dregistry

Once having started an appropriate number of registry replicas (depending on the
degree of fault tolerance needed), one or more computation servers have to be started.
Before you can start the compute server, you must add the computeserver target to your
build.xml file. To start an application server on a machine, the following command has
to be executed from the directory containing the class files of the computation server
application:

ant computeserver

For this simple application, we suggest to use the same hostfile for both the depend-
able registry replicas and the computation servers. In this way, computation servers may
locate the dependable registry service by simply inspecting machines included in their own
hostfile. The Jgroup API enables application developers to use different hostfile for the
dependable registry service and their applications. It is important to note that even when
the hostfiles are the same, it is not necessary that machines running application servers
run also a dependable registry replica, or vice versa.

The computation servers form a group and start waiting computation requests from
clients. To start a client, the following command has to be executed:

ant computeclient CalcFactorial <n>

Once again, the hostfile contains the description of the distributed system in which
application servers can be executed.

The client instantiates a CalcFactorial object initialized with a number for which the
factorial need to be computed, and invokes method compute on the computation server.
One of the servers takes care of computing the CalcFactorial object, and notifies the
result to the provided ResultListener. If more than one client requires the execution of
a task, the workload is subdivided among the computation servers forming the group.

In order to test the fault tolerance of this application, the reader may try to force the
crash of servers forming the group, or use the partition simulator (see Section 6.13 for
details) to simulate partitions among computation servers.

33

6 The Jgroup API

In the previous section, we have illustrated how to use some of the classes and interfaces
defined in the Jgroup toolkit. Here we provide the complete specification of the Jgroup
API. Additional information can be obtained from the Javadoc documentation included in
the Jgroup distribution.

6.1 Taxonomy of the Jgroup API

The interfaces and the classes included in the Jgroup API may be subdivided in three
categories: service interfaces, listener interfaces and helpers.

e A service interface specifies the methods that can be invoked by a server in order
to access the facilities of a Jgroup service. The MembershipService (Figure 36) is one
example of a Jgroup service interface, which is associated to the group membership
service and includes methods that can be invoked by servers to join or leave a group.

o A listener interface contains a set of methods that must be implemented by a server in
order to receive event notifications from one of the services provided by Jgroup. The
MembershipListener (Figure 36) is one example of a listener interface, which includes
methods invoked by the group membership service to notify a server that a new view
has been installed.

e Helpers are additional classes or interfaces that performs some useful task or maintain
some useful information. An example helper class is the member table, which can be
used to manage the information about the current state of members with respect to
installed views.

Each Jgroup service is associated to exactly one service interface and exactly one listener
interface. The interfaces associated to a service may contain no methods, in which case
they serve just as a marker. For instance the state merging service, which is based only on
event notifications performed through the listener interface, use an empty service interface
as a marker.

6.2 Package Structure

The Jgroup API may be subdivided in two main packages: jgroup.core and jgroup.relacs.
Package jgroup.core contains the actual Jgroup API, while package jgroup.relacs contains an
implementation of the Jgroup specification called Relacs. This separation is motivated by
the will of clearly separating the specification from the implementation, in order to enable
the use of alternative implementations.

6.3 The GroupManager Class

In order to access the services provided by Jgroup, a server must first notify Jgroup of its
existence and provide a listener object for each of the services required by the server. This is

34

package jgroup.core;

public class GroupManager
{
public Object getService(Class cl)

public static GroupManager getGroupManager(Object listener)
throws JgroupException

public static GroupManager getGroupManager(String configURL, Object listener)
throws JgroupException
}

Figure 28: The jgroup.core.GroupManager class.

performed by invoking static method getGroupManager on the GroupManager class. As shown
in Figure 28, this method comes in two variants. Both methods require a listener object
(commonly the server object) to be able to construct a group manager. In addition, one
of the methods also need a URL pointing to the configuration file, leaving it to the group
manager to parse the system configuration. Both methods returns a GroupManager object
that can be used (by the server object) to obtain references to layer objects implementing
the service interface of the requested services. This can be achieve through the getService
method of the group manager.

The format of the XML configuration file specified through the URL string, is detailed
in the next section.

The listener (server) object is used to inform Jgroup about the services requested by this
server. In order to use a given service, the server object must implement the corresponding
listener interface. A server object may implement several listener interfaces, in which case
all of the corresponding services will be instantiated; for example, the same object may
implement both the GMS and SMS listener interfaces.

Once obtained a group manager object, method getService may be invoked to obtain
references to the requested services. To obtain the reference for a particular service, the
class object of the service interface must be specified.

6.4 The Configuration Helpers

The current version of Jgroup contains numerous configuration helpers. Here we discuss
only two of them; one for configuring the distributed system in which object groups are
expected to run, the other is used for configuring the transport layer used by Jgroup to
communicate with other servers.

6.4.1 Distributed System Configuration

Upon initialization, the Jgroup runtime needs obtain information about how to locate
other Jgroup servers. In general, this information could be in the form of a list of hosts,
or a list of network addresses, or a multicast address. The format depends on the Jgroup
implementation, and in particular on the transport layer implementation.

35

<?7xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE Configuration SYSTEM "config.dtd">

<Configuration version="1.0">
<BootstrapRegistry port="1200"/>
<DependableRegistry locator="jgroup.relacs.registry.RelacsRegistryLocator"/>
<ReplicaManager name="jgroup.arm.rm.ReplicaManagerImpl" correlationDelay="5000"/>
<Transport payload="1024" maxTTL="10" TTLWarning="5"/>
<Services url="file:config/services.xml"/>
<Applications url="file:config/applications.xml"/>
<DistributedSystem>
<Domain name="cs.unibo.it" address="226.1.2.2">
<Host name="exeon" port="1100"/>
</Domain>
<Domain name="item.ntnu.no" address="226.1.2.3" port="6156">
<Host name="alpha" port="20000"/>
<Host name="beta" port="30000"/>
<Host name="gamma" port="40000"/>
</Domain>

</DistributedSystem>

</Configuration>

Figure 29: The XML configuration for the distributed system.

36

public class DistributedSystemConfig

{
[171771777777777777777/77777777777777777777777/77/777/77777777777/777/77/777/7777777
// Access methods - client and server side

LI111117777777777777777777777777777777777770777777777777777777777777777/777777

public DomainSet getDomainSet()
public HostSet getAllHosts()

LI11177
// Access methods - only for server side

LITI1117777777777777777777777777777777777770777777777777777777777777777777777

public Host getLocalHost ()

Figure 30: The class used to obtain information about the distributed system.

In the latest version of Jgroup, the list of domains and hosts of the distributed system is
specified using a custom XML format, as shown in Figure 29. The class jgroup.config.ConfigManager
is used to parse this configuration file, through the parse() method. Once the distributed
system configuration has been parsed, it can also be accessed through the ConfigMan-
ager.getConfig() method as follows:

/* Obtains configuration information */

DistributedSystemConfig dsc = (DistributedSystemConfig)
ConfigManager.getConfig(DistributedSystemConfig.class);

TransportConfig transport = (TransportConfig)
ConfigManager.getConfig(TransportConfig.class);

All elements in the XML configuration file has a corresponding class whose name is
augmented with Config. For example if the XML tag is titled DistributedSystem, then its
associated configuration class will have the name DistributedSystemConfig. As shown in the
code sample above, the dsc object will hold the content of the parsed XML data from the
DistributedSystem tag. In order to access this data, one needs to know the interface of the
DistributedSystemConfig object. The access interface for this configuration class is shown in
Figure 30.

The most common access method from the distributed system configuration is the
getDomainSet() and getAllHosts(). These methods return a DomainSet and HostSet instance,
respectively. They containing the information from the parsed XML configuration file, and
the most common thing to do is to iterate over their content in order to probe a given host
in the distributed system for availablity or some other specific functionality. However, they
provide also a more sofisticated interface, as shown in Figures 31 and 32.

Iterating over either type of set will allow access to either a Domain or Host object. How
to access these are shown in Figures 33 and 34. For further details about these classes,
please refer to the Jgroup API documentation.

As mentioned above, the DomainSet and HostSet provide more sofisticated functionality,
and in particular the addListener() methods enable systems to be built in such a manner

37

public class DomainSet

{
[1711777/77777/777/7777777/777/77/777/7777777
// Constructors
[171171777777777777777/777777777777777777/7777/77777/777/77777777/77777/777/7777777
public DomainSet ()
public DomainSet(int maxEntries)
public DomainSet(int maxEntries, float loadFactor)
[17177/77/777/777/77777777/777/77/777/7777777
// Listener interface

LI111117777777777777777777771077/777777

public void addListener(DomainListener listener)
LI1111777/77777777777777777777
// DomainSet interface methods

LI1111177777777777777777777770777777777777770777777777777777777777777777/777777

public boolean addDomain(String domainName, String mcastAdr, int port)
throws UnknownHostException

public boolean addDomain(Domain domain)
public boolean removeDomain(Domain domain)
public boolean containsDomain(Domain domain)
public int size()

public boolean isEmpty()

public Iterator iterator()

public Domain getFirst()
}

Figure 31: The DomainSet class used to access the configuration for the distributed system.

38

public class HostSet

{
LITITTI77/777777
// Constructors
LI1177
public HostSet()
public HostSet(int maxEntries)
public HostSet(int maxEntries, float loadFactor)
LI11177717
// Listener interface

[I1117717777777777777117777

public void addHostListener (HostListener listener)
LI111777
// HostSet interface methods
II11777
public Host getHost(InetAddress inetAddress)

public Host getHost(MemberId member)

public boolean addHost(String hostName, Domain domain, int port)
throws UnknownHostException

public boolean addHost(Host host)

public boolean removeHost(Host host)

public boolean containsHost(Host host)

public boolean containsHost(InetAddress inetAddress)
public int size()

public boolean isEmpty()

public Iterator iterator()

public Host getFirst()
}

Figure 32: The HostSet class used to access the configuration for the distributed system.

39

public class Domain

{
LILI11I077777777777777777777077/777777
// Constructors

LI1111777/777777

public Domain(String domainName, String mcastAdr, int mcastPort)
throws UnknownHostException

;;/éééééégé/{gégéégég/égéﬁéég//
11177177777177777717777777777771777777777777177777177777717777771777711777777
public InetAddress getAddress()

public int getPort()

public boolean isLocal()

public boolean isMulticastEndPoint()

public int getIntAddress()
;;/éééggg/{ﬁéééégég/éééﬁééé//
I11771777771777777177777717777717777777777771777777777777177777117777711777777
public String getDomainName ()

public int size()

public boolean isEmpty()

public void setLocal(boolean local)

public HostSet getHostSet()

public boolean addHost(Host host)

public Object get(String key)

public Object put(String key, Object value)
ff/éééiﬁ{éé/Qééﬁﬁéé/{ﬁ/éﬁ/ééﬁ//

///

public boolean equals(Object obj)

public int hashCode()
}

Figure 33: The Domain class used to access the configuration for the distributed system.

40

public class Host

{
[17171777777777777777777777777777777777777/7777/77777/777/77777777777/77/777/7777777
// Constructors

LI11177/777777

public Host(String hostName, Domain domain, int port)
throws UnknownHostException

LIVITI177/777777
// EndPoint interface methods
LI1I11177
public InetAddress getAddress()

public int getPort()

public boolean isLocal()

public boolean isMulticastEndPoint()

public int getIntAddress()
LIVI11177
// Host interface methods

L1110 77777777777777777777777770777
public String getCanonicalHostName ()

public String getHostName()

public String getDomainName ()

public Domain getDomain()

public Object get(String key)

public Object put(String key, Object value)
LILITT77077777777777777777777777770777
// Override methods in Object

LIT11177777777777777777777777077/77777

public boolean equals(Object obj)

public int hashCode()

Figure 34: The Host class used to access the configuration for the distributed system.

41

that hosts and domains can be added and removed from the distributed system. This
assumes that the components that handle hosts and domains also implement the required
listener interfaces and ensure that they also add and remove items from their local tables.
For a more detailed discussion of dynamic host and domain management, see Section 6.4.2.

6.4.2 Dynamic Host and Domain Configuration

Assuming that the system was initialized with a set of domains and hosts within each do-
main, we may later wish to add new hosts (and domains) to the system at runtime without
restarting the system, which would cause unavailability. To facilitate such functionality,
the DomainSet and HostSet allows programmers of functionality involving these host config-
uration classes to become listener to changes (addition and removal) in the host/domain
sets.

This is best explained through an example, therefore lets look at the DaemonManager
provided with the ARM framework [14]. The DaemonManager passivly monitors hosts
within the distributed system, checking if the execution service is available. Suppose that
when the DaemonManager was initialized, we did not know all the hosts and domains to
be used in the distributed system, but it was needed none the less. To solve this problem
the DaemonManager implements the HostListener interface, through the two methods ad-
dHost(Host host) and removeHost(Host host). When initializing the internal host tables of the
DaemonManager, for each HostSet within the distributed system, we invoke the addListener()
method. Thus, if the original host configuration change, one of the two listener methods
will be invoked, allowing the DaemonManager to update its internal host tables.

6.4.3 Transport Layer Configuration

Figure 35 shows the jgroup.TransportConfig class, which contains the basic information used
to configure the transport layer of any Jgroup implementation. This class contains only
one integer field, representing the port number used by the transport layer to communicate
with transport layers of other servers in different hosts. Two constructors are provided;
the default one constructs a transport layer with the default Jgroup communication port,
equal to 28771. The other takes an integer as argument and use it as communication port.
Note that if the configuration object array does not contain any TransportConfig object, the
default port number is used.

The Relacs implementation includes also a more complex implementation of Transport-
Config, called relacs.RelacsConfig (see Figure 35). RelacsConfig enables developers to specify
some of the parameters of the transport layer, such as the length of the payload field of
UDP packets used by Jgroup to communicate (payload), the number of routing messages
that could be lost before a remote host is suspected (lambda) and the time interval between
two routing messages sent by the transport layer (delta). More information may be found
in the Javadoc API documentation.

42

package jgroup;
public class TransportConfig {
public TransportConfig();
public TransportConfig(int port);
public int getPort();
}
package relacs;
public class RelacsConfig extends TransportConfig {
public RelacsConfig();
public RelacsConfig(int port);
public RelacsConfig(TransportConfig conf) ;

public void setPayload(int payload);
public int getPayload();

public void setLambda(int lambda) ;
public int getLambda();

public void setAlfa(int alfan, int alfad);
public int getAlfan();
public int getAlfad();

public void setRtimeout(int rtimeout);
public int getRtimeout();

Figure 35: The classes needed to configure the transport layer.

43

6.4.4 Multiple Groups

So far, we have implicitly made the assumption of the existance of a single group in the
system, joined by all servers in a distributed system. The reality may be more complex;
for example, a server may become member of more than one group; these groups may have
different group compositions, but want to share the same transport layer to save the costs
of routing and failure detection. Otherwise, different servers may co-exist in the same Java
virtual machine, using different distributed systems and transport layers. In this section
we explain how configuration helpers may be used to configure these and other scenarios.

First of all, if more than one server co-exist in a Java virtual machine, a separate invo-
cation of method getGroupManager must be performed for each of them. In the same way, a
server needing to join more than one group at the same time must invoke getGroupManager
once for each of the groups it intends to join.

As explained in the previous section, servers may specify a port number to be used
through a jgroup.TransportConfig configuration object. Each specified port number in a
Java virtual machine is controlled by a transport layer. Multiple servers in the same
Java virtual machine, or a single server joining multiple groups may share the facilities
provided by a transport layer by specifying the same communication port when requesting
a group manager. In order to use different transport layers, different port numbers must
be specified. Note that if no TransportConfig object is specified, the default port number
is used; this means that multiple invocations of getGroupManager with no TransportConfig
objects lead to multiple group managers sharing the same (default) transport layer.

Given two different invocations of getGroupManager specifying the same port number,
the first invocation actually configures the other parameters of the transport layer (such
as the distributed system description and the timing parameters described in the previous
sections). The second invocation returns a group manager based on the same transport
layer, so the other configuration parameters are ignored.

6.5 The Group Membership Service

Figure 36 shows the service and listener interfaces of the group membership service. The
facilities provided by GMS may be accessed using the MembershipService interface. Methods
in this interfaces enable servers to become members of a group and subsequentially leave
it.

As explained above, multiple objects joining different groups may share the facilities
provided by a single transport layer. In this case, the group identifier argument of the first
version of join enables to distinguish among multiple groups using the same communication
port. Otherwise, if each group is associated to a distinct communication port, servers may
join the group by invoking the second version of join, without needing to specify a group
identifier. In order to subsequentially leave a joined group, method leave could be invoked.
Note that an object member may receive event notifications such as view installations for
a group even after having request to leave the group itself. When the server eventually
leaves the group, method leaved() is invoked on the object(s) implementing the listener

44

package jgroup;
public interface MembershipService {

public void join(int gid)
throws JgroupException;

public void join() throws JgroupException;
public void leave() throws JgroupException;
public MemberId getMyIdentifier();
public MemberTable getMemberTable() ;

}

public interface MembershipListener {
public void viewChange(View view);

public void leaved();

Figure 36: The interfaces associated to the group membership.

interface. After this invocation, the member will not receive any event notification related
to the group.

Each membership service reference may be used to join a single group at a time; in
other words, two invocations of the join without a leave between them lead to an exception.

The MembershipService interface defines other two methods; method getMyldentifier re-
turns a Memberld object that uniquely identifies the server, while getMemberTable returns
a MemberTable object that can be used to manage the information about the current state
of members with respect to installed views. The functions of these classes are explained in
the next section.

Interface MembershipListener contains the methods that must be implemented to re-
ceive membership event notifications. When a view change occurs, GMS invokes method
viewChange to deliver the new View object to the listener. View objects maintain informa-
tion on the current installed view, as explained in the next section. As illustrated above,
method leaved is invoked after a member leaves the group, to acknowledge the effective
leaving.

6.6 The view Interface and Related Classes

Installed views consist of a membership list along with a unique view identifier, and corre-
spond to the group’s current composition as perceived by members included in the view.
The View interface (see Figure 37) enables to obtain the membership list as an array of
member identifiers through method getMembers, and the view identifier as a long value
through method getVid. Method getGid enables to obtain the identifier of the group to

45

package jgroup;

public interface View {
int getGid();
long getVid(Q);
MemberId[] getMembers();

}

public interface MemberId {
public java.net.InetAddress getAddress();
public int getCounter();
public boolean isNewer (MemberId id);
public boolean isNeighbour(MemberId id);

}

public class MemberTable implements MembershipListener {
public final static int NOTMEMBER
public final static int PARTITIONED
public final static int CRASHED
public final static int RECOVERING
public final static int SURVIVED

public final static int MERGING
public final static int NEWMEMBER

W wwnnn
DO WN O

public MemberTable();

public int getState(MemberId id);

public int getIndex(MemberId id);

public void put(MemberId id, Object value);
public Object get(MemberId id);

public void remove(MemberId id);

public Object[] elements();

public MemberId[] members();

public boolean isMember(MemberId id);

public void viewChange(View view);

Figure 37: The View interface and related classes.

46

which this view is related.

Instances of this class uniquely identify a member object in a group. A member iden-
tifier is composed by three parts: an IP address, uniquely identifying the machine hosting
the member; the incarnation time of the Jgroup runtime system hosting the member, i.e.
the time at which the Jgroup run-time system has been created; and finally, a member
counter, which is used to distinguish multiple members running in the same Java virtual
machine.

Member ids created in a Java virtual machine share the same IP address and the same
incarnation number; thus, identifiers of members hosted in the same Java virtual machine
differs only for the member counter. Member ids may be compared in the following ways:

e two members ids are equal (method equals) if and only if they have the same IP
address, the same incarnation time and the same member counter;

e two members ids are neighbor (method isNeighbour) if and only if they have the same
IP address and the same incarnation time; i.e., if they are hosted in the same virtual
machine;

e a member id is newer than another member id (method isNewer) if and only if their IP
addresses are the same and the incarnation time of the former id is greater than the
incarnation time of the latter id; in other words, if the Java virtual machine hosting
the latter member id has crashed and then recovered.

Apart from methods isNewer and isNeighbour, useful to compare member identifiers,
interface Memberld contains also a method getAddress to obtain the IP address of the machine
in which the member is hosted, while getCounter returns a counter used to distinguish
multiple members running in the same Java virtual machine.

Aim of the MemberTable helper class is to support developers in maintaining informa-
tion about servers in the group. Member tables can be used as hash tables, to associate
application-dependent information to member identifiers. Member tables maintain also
information about the state of group members with respect to both the current view and
previously installed views. In the computation server example, a member table has been
used to store information about other members, and to discover which servers are new
servers to redistributed the workload when needed.

Member tables are obtained by invoking method getMemberTable on the group mem-
bership service reference, or by using the default constructor of the class. Member tables
obtained in the former way are automatically updated by GMS when a new view is in-
stalled; otherwise, the application developer must take care of explicitly updating the table
by invoking method viewChange on it.

A table maintains information about a member until it crashes. A member is declared
crashed when a member identifier from the same host, but with an higher incarnation
number is inserted in the table. This means that the JVM hosting the member has crashed,
and a new one has started. The information associated to the member is maintained until
the next view change, after which the member identifier and all its associated information
is removed from the table.

47

package jgroup;
public interface Merginglistener {
public Object getState(MemberId[] dests);

public void putState(Object status, MemberId[] sources);

Figure 38: The interfaces associated to the state merging service.

Method getState returns the state associated to the specified member identifier. The
returned value is one of the integer constants defined in the class; possible states are not
member, crashed, partitioned, recovering, survived (from the previous view), merging, new
member. Method getIndex returns the index of the specified member identifier in the view
composition array obtained by invoking method getMembers on the current view; returns
-1 if the member is not included in that view. Method isMember returns true if and only if
the specified member identifier is included in the current view.

Method put associates an object to the specified member identifier. This association is
maintained in the table until it is explicitly removed from the table using method remove,
or the member is declared crashed. Values may be subsequentially retrieved using method
get, which returns the value associated to the specified member id. Returns null if the table
contains no mapping for this member id. A return value of null does not necessarily indicate
that the table contains no mapping for the key; it is possible that the table explicitly maps
the key to null. Method remove removes the object associated to the specified member
identifier. Finally, methods elements and members return an array containing the values
associated to member identifiers and the members identifiers contained in the member
table, respectively.

6.7 The State Merging Service

Figure 38 shows the listener interface of the state merging service. Differently from other
facilities included in Jgroup, the SMS command interface is empty. Applications using
SMS must provide an object implementing the listener interface, and can only receive
notifications from SMS.

When a server is elected coordinator for the state merging protocol, method getState is
invoked on its state merging listener. The listener must respond with an object containing a
snapshot of its current state. This snapshot may be complete, i.e. contain all information
about the state, or may be partial, i.e. contain only the information needed to update
servers contained in dests. The choice between returning a complete or partial state is
application-dependent, and in particular depends on the size of the state to be returned.
The dests array contains the servers that have been partitioned and have not been updated
yet.

The state returned by a coordinator is delivered to the other application servers by

48

package jgroup;
public interface ExternalGMIListener extends Listener, Remote {}
public interface InternalGMIListener extends Listener {}
public interface ExternalGMIService {
public IID getIdentifier();

public IID bind(String name)
throws RemoteException, AccessException;

public IID bind(String name, DependableRegistry registry)
throws RemoteException, AccessException;

}

public interface InternalGMIService {

void invoke(Method m, Object[] args, Callback callback)
throws Exception;

Figure 39: The interfaces associated to the GMI service.

invoking method putState on the listener objects associated to them. Method putState has
two arguments, one containing the object returned by the coordinator when completing
method getState, the other containing the list of members for which the coordinator acted
as a representative.

6.8 The GMI Service

Figure 39 contains the definition of both the listener and command interfaces for the exter-
nal and internal GMI services. Listener interfaces ExternalGMIListener and InternalGMIListener
are two tag interfaces used to mark application-defined interfaces as external or internal,
respectively. They do not contain any method to be implemented.

6.8.1 The External GMI Service

ExternalGMIService is the command interface of the external GMI service. Method getlden-
tifier returns the invocation identifier of the external invocation currently executed. If, on
the other hand, getldentifier is invoked outside an external invocation, null is returned. In-
vocation identifiers uniquely identify invocations performed by clients, and are used by the
external GMI service to detect and discard duplicate executions of the same method on the
same server. Application developers may use invocation identifiers to identify operation
performed in different partitions. Each identifier is composed of the client identifier (the IP
address of the machine hosting the JVM), an incarnation number (used to distinguish dif-
ferent virtual machines residing at the same host) and an invocation counter (incremented

49

package jgroup;
public interface Callback {
public void result(MemberId id, Object result);

public void exception(MemberId id, Exception e);

Figure 40: The Callback interface.

at each invocation). Interface 11D, together with interface VMID can be used to access the
information contained in an invocation identifier. Further details about these interfaces
may be found in the Javadoc documentation of package jgroup.

The other methods contained in ExternalGMIService enables servers to be bound in a
dependable registry service. The first version of method bind assumes that the dependable
registry services is located in the same distributed system of the application servers, while
the second version takes an explicit (remote) reference to a dependable registry service.
Both methods take the name under which the application server must be bound as an
argument.

6.8.2 The Internal GMI Service

InternalGMIService is the command interface of the internal GMI service. The only method
defined in this interface enables servers to perform asynchronous invocations of internal
methods. invoke takes three arguments. The first one is the method to be invoked; only
methods belonging to an interface extending InternalGMIListener can be invoked. The second
argument is an array of objects containing the parameters of the invocation. Individual
parameters are automatically unwrapped to match primitive formal parameters, and both
primitive and reference parameters are subject to widening conversions as necessary. The
third argument is a callback object which will receive the return value upon completion
of the invocation. The callback object must be written by the application developer and
must implement the Callback interface illustrated in Figure 40.

Callback defines two methods, result and exception. The former is invoked when the
method has been executed correctly with a regular return value, while the second is invoked
when an exception has been generated during the method execution. For both methods,
the first argument is the identifier of the member that executed the method.

6.9 The Client and Server Side Proxies

In order to enable clients and servers to use a uniform method call interface, even for
communication with a group of objects, Jgroup makes extensive use of so called proxies.
You may think of a proxy object is a replacement for a real object. Using a proxy, requires
that the proxy object be invoked instead of the real object, and in Jgroup this facility is
used to invoke multiple “real” objects. In particular, Jgroup makes use of dynamic proxy

20

generation. Also note that, the word “stub” is often used interchangably with the term
Proxy.

A server proxy for an object group is a server-side entity that contains a method which
dispatches calls to the actual server implementation. Moreover, the server proxy is also a
object group stub which is responsible for forwarding internal method invocations to the
servers forming the group.

A client proxy is a object group stub which is responsible for forwarding external method
invocations to the servers where the actual servers forming the object groups reside. A
client’s reference to an object group, therefore, is actually a reference to a local client proxy.

The server proxy implements only the internal GMI interfaces implemented by the
server, while the client proxy implements only the external GMI interfaces. Interfaces not
extending ExternalGMIListener and InternalGMIListener are not considered by the dynamic
proxy generation facility of Jgroup. Because the client (server) proxy implement exactly
the same set of external (internal) GMI interfaces as the object group itself, a client can
use the Java language’s built-in operators for casting and type checking.

6.10 The Dependable Registry Service

A dependable registry is a bootstrap naming service which is used by GMI servers to bind
server to group names. Clients can then look up object groups and make external group
method invocations.

The dregistry command starts a dependable registry instance on the local machine.
The command produces no output and is typically run in the background.

The syntax for the dregistry command is the following

ant dregistry

In order to programmatically access the dependable registry service, the DependableReg-
istry and RegistryFactory classes in the jgroup.registry package may be used. These classes are
similar to the Registry and LocateRegistry classes contained in the java.rmi.registry package
included in the SDK. They can be used to get a dependable registry replica operating on a
particular host. Interested readers may refer to the Jgroup API documentation for further
information on these classes.

6.11 Greg: the Group-Enabled Lookup Service

As mentioned above, in Jgroup 1.1 it is possible to use Greg instead of the dependable
registry to obtain proxies for object groups. Greg derives from Reggie, the Sun’s reference
implementation of the Jini lookup service, and extends it to manage the registration of
group proxies.

Reggie enables registration of customized proxies for services. This feature could be
used to register group proxies through any implementation of the lookup service. Group
proxies, however, differ from standard proxies as their contents may be dynamic. A server
registering in a lookup service must not overwrite existing information about previously

51

registered group servers. Instead, it must add its information to an existing group proxy.
Furthermore, when a server crashes or becomes partitioned, and fails to renew the lease ob-
tained from the lookup service when registering, the information about it has to be removed
from the group proxy, clearly without removing the entire proxy. These considerations lead
us to develop an alternative implementation of the lookup service, in which group servers
register their information in a group proxy by specifying a group name attribute.

In order to start greg, other services must be started. First of all, greg is an activatable
service; this means that it requires an RMI daemon running on the same machine, which
has to be started through the rmid command. Furthermore, an http daemon must be able
to provide the jar file containing the code of remotely loaded classes. The readme.txt file
contained in the Jgroup distribution explain how to start greg.

6.12 The Reliable Multicast Service

Internal group method invocations are not the only way for servers to communicate; when
a simpler (and more efficient) communication mechanism is needed, Jgroup provide also a
reliable multicast service (RMS) which can substitute the internal group method invocation
service. Classes related to the RMS are contained in package jgroup.multicast. For those
interested in using RMS, please refer to the RMS specification [16] and to the Jgroup API
documentation.

6.13 The Partition Simulator

For more information on the partition simulator, please refer to the source code (relacs.simulator
and relacs.mss packages). Further information will be provided in future version of this
manual.

References

[1] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable Group Membership Services
for Novel Applications. In Proceedings of the DIMACS Workshop on Networks in
Distributed Computing, pages 23-42. American Mathematical Society, 1998.

[2] The jakarta site - ant. http://jakarta.apache.org/ant/.
[3] Ant User Manual. http://jakarta.apache.org/ant/manual/index.html.

[4] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath. The Jini Specifi-
cation. Addison-Wesley, 1999.

[5] O. Babaoglu, A. Bartoli, and G. Dini. Enriched View Synchrony: A Programming
Paradigm for Partitionable Asynchronous Distributed Systems. IEEE Transactions
on Computers, 46(6):642-658, June 1997.

52

[6]

[17]

O. Babaoglu, R. Davoli, A. Montresor, and R. Segala. System Support for Partition-
Aware Network Applications. In Proceedings of the 18th International Conference on
Distributed Computing Systems (ICDCS), pages 184-191, Amsterdam, The Nether-
lands, May 1998.

Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group Communication in
Partitionable Systems: Specification and Algorithms. IEEE Transactions on Software
Engineering, 27(4):308-336, April 2001.

K. Birman. The Process Group Approach to Reliable Distributed Computing. Com-
munications of the ACM, 36(12):36-53, December 1993.

K. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS Toolkit.
IEEE Computer Society Press, 1994.

G. Collson, J. Smalley, and G.S. Blair. The Design and Implementation of a Group
Invocation Facility in ANSA. Technical Report MPG-92-34, Distributed Multimedia
Research Group, Department of Computing, Lancaster University, Lancaster, UK,
1992.

Object Management Group. Fault Tolerant CORBA Using Entity Redundancy. OMG
Request for Proposal orbos/98-04-01, Object Management Group, Framingham, MA,
April 1998.

Object Management Group. The Common Object Request Broker: Architecture and
Specification, Rev. 2.3. Object Management Group, Framingham, MA, June 1999.

C. Malloth. Conception and Implementation of a Toolkit for Building Fault-Tolerant
Distributed Applications in Large-Scale Networks. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne, 1996.

Hein Meling and Bjarne E. Helvik. ARM: Autonomous Replication Management
in Jgroup. In Proceedings of the jth European Research Seminar on Advances in
Distributed Systems (ERSADS), Bertinoro, Italy, May 2001.

A. Montresor. A Dependable Registry Service for the Jgroup Distributed Object

Model. In Proceedings of the 3rd FEuropean Research Seminar on Advances in Dis-
tributed Systems (ERSADS), Madeira, Portugal, April 1999.

A. Montresor. System Support for Programming Object-Oriented Dependable Appli-
cations in Partitionable Systems. PhD thesis, Department of Computer Science, Uni-
versity of Bologna, February 2000.

Sun Microsystems, Mountain View, CA. Java Remote Method Invocation Specification,
Rev. 1.7, December 1999.

23

[18] Sun Microsystems, Mountain View, CA. Enterprise JavaBeans Specification, Version
2.0, August 2001.

[19] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A Flexible Group Communica-
tion System. Communications of the ACM, 39(4):76-83, April 1996.

o4

